1. Using the by part integration, and assuming $u=x e^{x}$ and $d v=\frac{1}{(x+1)^{2}}$, find

$$
\int_{0}^{1} \frac{x e^{x}}{(x+1)^{2}} d x
$$

2. Find
(a) $\int x e^{4 x} d x$
(b) $\int x \sqrt{x-2} d x$
[3 marks]
3.

Water flows out of a tap at the bottom of a large cylindrical tank at a rate proportional to the square root of the depth of the water remaining in the tank. Initially the tank is full to a depth of 9 m . After 15 minutes the depth of water is 4 m . How long would it take for the tank to empty?
[7 marks]
4. Show that the equation $\tan x=2 x$ has a root in the interval $\left(\frac{\pi}{4}, \frac{\pi}{2}\right)$. Use NewtonRaphson to find the root of the equation between $\frac{\pi}{4}$ and $\frac{\pi}{2}$, correct to three decimal places.
[10 marks]
5. Prove that $16 x^{2}+9 y^{2}-32 x+36 y-92=0$ is an ellipse. Hence find the coordinates for its vertices and centre. Sketch the graph of the ellipse.
[10 marks]
6. (a) Find the area of the region bounded by the curve $y=\frac{x^{2}}{2}+1$ and the graph

$$
y=\frac{3}{2}|x|+1 .
$$

(b) Find the volume generated when the region bounded by the curve $y=\frac{x^{2}}{2}+1$ and the graph $y=\frac{3}{2}|x|+1$ for $x>0$ is rotated completely about the y-axis.

Final Answer

1. $\frac{e}{2}-1$
2. (a) $\frac{x e^{4 x}}{4}-\frac{e^{4 x}}{16}+c$
(b) $\frac{2}{5}(x-2)^{\frac{5}{2}}+\frac{4}{3}(x-2)^{\frac{3}{2}}+c$
3. 45 minutes
4. 1.166
5. centre $(1,-2) ; \quad$ vertices $(1,-2 \pm 4)$
6. (a) $4 \frac{1}{2}$ unit 2
(b) $6 \frac{3}{4} \pi$ unit 3
