1. The equation of the circle is $x^{2}+y^{2}-2 x-8 y+16=0$.
a) Find the center and radius of the circle.
b) Show that the point $\mathrm{A}(4,8)$ lies outside of the circle. Hence find the length of the tangent to the circle from the point A .
[5 marks]
2. Given $y=e^{3 x} \ln x$, find $\frac{d y}{d x}$. Hence find $\int \frac{e^{3 x}}{9}\left[\frac{1}{x}+3 \ln x\right] d x$.
3. Show that the equation $e^{2 x}=16-16 \cos ^{2} x$ has a root between $x=1$ and $x=2$. Use the Newton-Raphson method to obtain the root of the equation, correct to three significant figures, by taking $x=1.4$ as the first approximation.
4. Find the solutions of the following differential equations.
a) $(x+1) \frac{d y}{d x}-y=x^{2}-1$
b) $\left(2 x^{2}+x\right) \frac{d y}{d x}=\frac{4 x+1}{\tan y} \quad ; y(1)=0$
[5 marks]
5. a) Find the equation of the parabola whose set of points (x, y) are such that the distance of each point from $(3,1)$ is equal to its distance from the line $\mathrm{x}=1$.
[4 marks]
b) The center of an ellipse is ($-1,2$), the minor axis is parallel to the y-axis and passes through the point $(4,2)$ and $\left(-5,-\frac{2}{5}\right)$. Find the general equation of the ellipse.
6. Express $\frac{3 x^{2}-7 x+6}{(x-3)^{2}(x+1)}$ in the form of partial fraction. Hence evaluate $\int_{1}^{2} \frac{3 x^{2}-7 x+6}{(x-3)^{2}(x+1)} d x$. Give the answer in the form of $a+\ln b$.

END OF QUESTION

Final Answer

1. a) \quad center $=(1,4) ; \quad$ radius $=1$
b) $2 \sqrt{6}$
2. $\frac{d y}{d x}=e^{3 x}\left[\frac{1}{x}+3 \ln x\right] ; \frac{1}{9} e^{3 x} \ln x+c$
3. 1.37
4. a) $y=(x+1)[x-2 \ln |x+1|+c]$
b) $y=\cos ^{-1}\left(\frac{3}{2 x^{2}+x}\right)$
5. a) $y^{2}-2 y-4 x+9=0$
b) $16 x^{2}+25 y^{2}+32 x-100 y-284=0$
6. a) $\frac{1}{x+1}+\frac{2}{x-3}+\frac{3}{(x-3)^{2}} \quad ; \quad \frac{3}{2}+\ln \left(\frac{3}{8}\right)$
