1. Evaluate
a) $\int_{1}^{2} 2 x^{2} \sqrt{x^{3}+2} d x$
b) $\int_{0}^{1} x e^{-2 x} d x$ leaving your answer in terms of e
2. A circle touches two perpendicular lines $2 x-3 y=15$ and $3 x+2 y=3$ at points A $(6,-1)$ and $B(1,0)$ respectively. Find the equation of the circle.
3. Show that the equation $25 x^{2}+9 y^{2}-150 x-18 y+9=0$ represents an ellipse and find the coordinates of the centre and vertices. Sketch the ellipse.
4. Show that the differential equation $\operatorname{cosec} x \frac{d y}{d x}+y \sec x=2 \cos x$ can be expressed in the form $\frac{d y}{d x}+P(x) y=Q(x)$, where P and Q are functions in x. Hence prove that the general solution of this differential equation is $y=c \cos x-2 \cos ^{2} x$, where c is a constant.
[7 marks]
5. Given that $y=\ln \left(1+x^{2}\right)$, if an approximate of

$$
\int_{0}^{2} y d x=1.4373, \quad y_{n}=1.6094 \quad \text { and } \quad \sum_{i=1}^{n-1} y_{i}=4.9446 . \text { Find the value of } \mathrm{n} .
$$

6. a) Find the area of the region bounded by $y=\sqrt{x}, y=x-2$ and the x-axis.
b) Hence, find the volume of the solid generated by revolving the region 2π radians about the x-axis. Give your answer in terms of π.
[12 marks]

END OF QUESTION

Final Answer

1.

a) 11.745
b) $\frac{1}{4}\left(1-3 e^{-2}\right)$
2. $x^{2}+y^{2}-8 x-4 y+7=0$
3. $\frac{(x-3)^{2}}{9}+\frac{(y-1)^{2}}{25}=1 ; \quad$ Centre : $(3,1) \quad$ Vertices : $(3,-4),(3,6)$
5. $n=8$
6. Area $=\frac{10}{3}$ unit $^{2}, V=\frac{16}{3} \pi$ cu. unit

