1. Use the Newton-Raphson method to estimate $\sqrt[3]{4}$ correct to three decimal places.
2. A circle passes through the point $(5,2)$ and touches the line $y+x=9$ at the point $(3,6)$. Find the coordinates of the centre and the radius of the circle. Hence, state the standard equation of the circle.
3. Determine the general equation of the differential equation $x \frac{d y}{d x}-y=3 x^{2}$.

Hence find the particular solution for $y(2)=0$.
4. Sketch, on the same coordinate axes, the curves $y=e^{x}$ and $y=2+3 e^{-x}$. Calculate the area of the region bounded by the y-axis and the curves.
5. (a) Find the foci of $4 x^{2}+9 y^{2}=36$ and sketch its graph.
(b) By using implicit differentiation, find the gradient of the tangent to the curve $4 x^{2}+9 y^{2}=36$. Hence, find the coordinates on the curve with gradient $\frac{2}{9}$.
6. (a) Find $\int \frac{3 x}{e^{x}} d x$
(b) Find the values of A, B and C which satisfy

$$
\frac{x+2}{(1-x)\left(x^{2}+2\right)}=\frac{A}{1-x}+\frac{B x+C}{x^{2}+2}
$$

Hence, find $\int \frac{x+2}{(1-x)\left(x^{2}+2\right)} d x$.

END OF QUESTION

Final Answer

1. 1.587
2. \quad centre $=(-2,1) ;$ radius $=5 \sqrt{2}$; the equation of circle is $(x+2)^{2}+(y-1)^{2}=50$
3. $y=3 x^{2}+c x ; y=3 x^{2}-6 x$
4. \quad Area $=2.20$ units 2
5. a) $\operatorname{Foci}=(\sqrt{5}, 0)$ and $(-\sqrt{5}, 0)$.
b) $\quad \frac{d y}{d x}=-\frac{4 x}{9 y} ; \quad$ Coordinates $=\left(\frac{3 \sqrt{10}}{10},-3 \sqrt{\frac{2}{5}}\right)$ and $\left(-\frac{3 \sqrt{10}}{10}, 3 \sqrt{\frac{2}{5}}\right)$
6. a) $-3 e^{-x}[x+1]+c$
b) $\quad A=1, B=1, C=0$

$$
-\ln |1-x|+\frac{1}{2}\left[\ln \left|x^{2}+2\right|\right]+C
$$

