- Find the equation of the parabola with vertex at (2, 1), the axis of symmetry is parallel to *x*-axis and passing through the point (1, 0). [6 marks]
- 2. Find the general equation of a circle that touches the straight line 4x 3y + 24 = 0 at the point (0, 8) and passes through the point (7, 9). [7 marks]

3. Given
$$e^{-x} \frac{dy}{dx} = (1-y)^2$$
 and $y = 0$ when $x = 0$, express y in terms of x. [7 marks]

4. Find the area of the region bounded by the curve $y = (\cos 2x - \sin 2x)^2$, the y-axis, and the *x*-axis from x = 0 to the first point where the curve touches the positive *x*-axis.

[7 marks]

- 5 a) Use integration by parts to find $\int (t-1) \ln t \, dt$. [4 marks]
 - b) Use the substitution t = 2x + 1 to show that $\int 4x \ln(2x + 1) dx$ can be written as

$$[(t-1)\ln t \ dt$$
 [3 marks]

- c) Hence find the exact value of $\int_0^1 4x \ln(2x+1) dx$. [4 marks]
- 6 a) Show that the equation $x^3 + x = 5$ has a root between 1 and 2. By using the Newton-Raphson method and taking $x_0 = 1$ as a first approximation, determine an approximation to this root, giving your answer to two decimal places. [6 marks]
- b) Use the trapezoidal rule to approximate $\int_{-1}^{1} \sqrt{1-x^2} dx$ with 6 subintervals, giving your answer correct to three decimal places. [6 marks]

END OF QUESTION

Final Answer

1.
$$(y-1)^2 = -(x-2)$$

2. $x^2 + y^2 - 8x - 10y + 16 = 0$
3. $y = 1 - e^{-x}$
4. 0.143 unit^2
5 $a)\left(\frac{t^2}{2} - t\right)\ln t - \frac{t^2}{4} + t + C$
c) $\frac{3}{2}\ln 3$
6 a) 1.52
b) 1.459