1. Find the equation of the parabola with vertex at $(2,1)$, the axis of symmetry is parallel to x-axis and passing through the point $(1,0)$.
2. Find the general equation of a circle that touches the straight line $4 x-3 y+24=0$ at the point $(0,8)$ and passes through the point $(7,9)$.
3. Given $e^{-x} \frac{d y}{d x}=(1-y)^{2}$ and $y=0$ when $x=0$, express y in terms of x.
4. Find the area of the region bounded by the curve $y=(\cos 2 x-\sin 2 x)^{2}$, the y-axis, and the x-axis from $x=0$ to the first point where the curve touches the positive x-axis.

5 a) Use integration by parts to find $\int(t-1) \ln t d t$.
b) Use the substitution $t=2 x+1$ to show that $\int 4 x \ln (2 x+1) d x$ can be written as

$$
\int(t-1) \ln t d t
$$

c) Hence find the exact value of $\int_{0}^{1} 4 x \ln (2 x+1) d x$.

6 a) Show that the equation $x^{3}+x=5$ has a root between 1 and 2. By using the NewtonRaphson method and taking $x_{0}=1$ as a first approximation, determine an approximation to this root, giving your answer to two decimal places.
[6 marks]
b) Use the trapezoidal rule to approximate $\int_{-1}^{1} \sqrt{1-x^{2}} d x$ with 6 subintervals, giving your answer correct to three decimal places.

END OF QUESTION

Final Answer

1. $(y-1)^{2}=-(x-2)$
2. $x^{2}+y^{2}-8 x-10 y+16=0$
3. $y=1-e^{-x}$
4. $0.143 u n i t^{2}$

5
a) $\left(\frac{t^{2}}{2}-t\right) \ln t-\frac{t^{2}}{4}+t+C$
c) $\frac{3}{2} \ln 3$
$6 \quad$ a) 1.52
b) 1.459

