1. Find $\int \frac{1}{1+e^{-2 x}} d x$.
2. Use the Trapezoidal Rule with $n=4$ to approximate $\int_{0}^{2} \frac{1}{1+x^{2}} d x$. Give your answer correct to four decimal places.
3. Sketch the graph of parabola with vertex at $(3,-1)$ and focus $(5,-1)$. Hence find the equation of the parabola.
4. Determine the general solution of $\frac{d y}{d x}=9 x^{2} y \sqrt{x^{3}-1}$. Hence state y in terms of x when $y(1)=1$.
5. A circle passes through the points $(1,-1)$ and $(3,5)$. Given that the line $y=-\frac{2}{3} x+\frac{7}{3}$ passes through the center of the circle. Find the equation of the circle.
[12 marks]
6. Find $\int 8 x^{2} e^{2 x} d x$. Hence find the volume of the solid generated when the region bounded by the curve $y=5 x e^{x}$ and the lines $x=0, x=1 \quad y=0$ is rotated through 2π about the x -axis.

END OF QUESTION

Final Answer

1. $\quad \frac{1}{2} \ln \left|e^{2 x}+1\right|+C$
2. 1.1038
3. $(y+1)^{2}=8(x-3)$
4. $y=A e^{2\left(x^{3}-1\right)^{\frac{3}{2}}} ; y=e^{2\left(x^{3}-1\right)^{\frac{3}{2}}}$
5. $x^{2}+y^{2}+2 x-6 y-10=0$
6. $2 e^{2 x}\left(2 x^{2}-2 x+1\right)+C ; \quad \frac{25 \pi}{4}\left(e^{2}-1\right) u n i t^{3}$
