LECTURE 1 OF 7

TOPIC : 5.0 VECTORS

SUBTOPIC : 5.1 Vectors in Three Dimensions

LEARNING : At the end of the lesson, students should be able to:

OUTCOMES

(a) determine the types of vectors

(b) perform addition and scalar multiplication

5.1 Vectors In 3-Dimensions

The Cartesian coordinate for space are often called rectangular coordinate.

Figure 2.1

This consist of a fixed point O, the origin, and three mutually perpendicular axes, Ox, Oy and Oz. The axes are placed in such a way that they form a right-handed set as shown in figure 2.1.

Each pair of coordinate axes determines a plane called a *coordinate plane*. These are referred to as the *xy-plane*, the *xz-plane* and the *yz-plane*.

Figure 2.2

Any point P in space can be specified by an ordered triple of numbers (a, b, c) where a, b and c are the steps in the direction of x, y and z axes respectively, to P.

In figure 2.2, we have constructed the point P(1, 2, 3).

Figure 2.3

We now take unit vectors i, j and k in the direction of x, y and z axes respectively.

If P(a, b, c) is any point in the space, then the position vector of P is

$$\overrightarrow{\mathrm{OP}} = a\mathbf{i} + b\mathbf{j} + c\mathbf{k} \quad \text{or} \quad \langle a, b, c \rangle$$

In figure 2.3, the position vector of the point (1, 2, 3) is i+2j+3k. Conversely, the point whose position vector is 2i-4j+k has coordinates (2, -4, 1).

5.1 a) Types of Vectors

Position Vector

A vector that starts at the origin is called a position vector. So, the position vector of B is the vector that starts from the origin and ends at B; $\mathbf{b} = \mathbf{OB}$. Similarly, position vector of P is $\mathbf{p} = \mathbf{OP}$

Zero Vector

The zero vector, denoted by 0, has magnitude zero. Contrary to all the other vectors, it has no specific direction.

Unit vector

The unit vector of a vector \mathbf{a} is a vector whose magnitude is 1 unit in the direction of \mathbf{a} .

The unit vector of
$$\mathbf{a}$$
, $\hat{a} = \frac{a}{|a|}$

Parallel vectors

If the vectors u_1 and u_2 are parallel, then they are scalar multiple of each other.

Thus,
$$u_1 = \lambda u_2$$
, $\lambda \in \Re$.

Perpendicular Vector

If vector \mathbf{a} and \mathbf{b} are perpendicular, hence the angle between \mathbf{a} and \mathbf{b} is 90.

5.2 b) Addition and Scalar Multiplication of Vectors

Vector Arithmetic

Vectors in space apply the same rules of addition, subtraction, scalar multiplication and also the magnitude just as they are in the plane.

For any vectors $\mathbf{v_1} = a_1\mathbf{i} + b_1\mathbf{j} + c_1\mathbf{k}$ and $\mathbf{v_2} = a_2\mathbf{i} + b_2\mathbf{j} + c_2\mathbf{k}$, and for any scalar k,

i)
$$|\mathbf{v_1}| = \sqrt{a_1^2 + b_1^2 + c_1^2}$$

ii)
$$\mathbf{v}_1 + \mathbf{v}_2 = (a_1 + a_2)\mathbf{i} + (b_1 + b_2)\mathbf{j} + (c_1 + c_2)\mathbf{k}$$

 $\mathbf{v}_1 - \mathbf{v}_2 = (a_1 - a_2)\mathbf{i} + (b_1 - b_2)\mathbf{j} + (c_1 - c_2)\mathbf{k}$

iii)
$$k\mathbf{v}_1 = ka_1\mathbf{i} + kb_1\mathbf{j} + kc_1\mathbf{k}$$

Example 1

Find $|2\mathbf{a} - \mathbf{b}|$ where $\mathbf{a} = \mathbf{i} + \mathbf{j} + \mathbf{k}$ and $\mathbf{b} = -\mathbf{i} + 3\mathbf{j} - 2\mathbf{k}$.

Example 2

Find a unit vector \mathbf{u} in the direction of the vector from A(1, 0, 1) to B(3, 2, 0). Hence, find a vector 6 units long in that direction.

Example 3

If
$$\mathbf{p} = 2\mathbf{i} + 3\mathbf{j} + \mathbf{k}$$
 and $\mathbf{q} = \mathbf{i} + 2\mathbf{j} - 2\mathbf{k}$, express in terms of \mathbf{i} , \mathbf{j} and \mathbf{k} (a) $\mathbf{p} + \mathbf{q}$ (b) $\mathbf{q} - \mathbf{p}$

LECTURE 2 OF 7

TOPIC : 5.0 VECTORS SUBTOPIC : 5.2 Scalar Product

LEARNING : At the end of the lesson students should be able to:

OUTCOMES(a) find the scalar product

(b) use the properties of scalar product

(c) find the angle between two vectors

(d) find the direction cosines for a non-zero vector

5.2 a) The Scalar Product (Dot Product)

The scalar product of two vectors is $\mathbf{a} = a_1 \mathbf{i} + a_2 \mathbf{j} + a_3 \mathbf{k}$ and $\mathbf{b} = b_1 \mathbf{i} + b_2 \mathbf{j} + b_3 \mathbf{k}$ is the operation which is written $\mathbf{a.b}$ and defined as

$$\mathbf{a} \cdot \mathbf{b} = |\mathbf{a}| |\mathbf{b}| \cos \theta$$
,

where θ ($0 \le \theta \le 180$) is the angle between **a** and **b**.

Definition

The scalar product between **a** and **b** is also defined as :-

$$\mathbf{a} \cdot \mathbf{b} = a_1 b_1 + a_2 b_2 + a_3 b_3$$

Example 1

Evaluate $\mathbf{a} \cdot \mathbf{b}$ if $\mathbf{a} = 3\mathbf{i} - 7\mathbf{k}$, $\mathbf{b} = -2\mathbf{j} + 3\mathbf{k}$.

Example 2

Evaluate

- a) $(2i j) \cdot (3i + 4k)$
- b) $(3j-2k) \cdot (i+2j-7k)$

5.2 b) Properties of the scalar product

- 1. $\mathbf{a} \cdot \mathbf{a} = |\mathbf{a}|^2$
- 2. $a \cdot b = b \cdot a$
- 3. $\mathbf{a} \cdot (\mathbf{b} + \mathbf{c}) = \mathbf{a} \cdot \mathbf{b} + \mathbf{a} \cdot \mathbf{c}$
- 4. $(m\mathbf{a}) \cdot \mathbf{b} = m (\mathbf{a} \cdot \mathbf{b}) = \mathbf{a} \cdot (m \mathbf{b})$
- 5. $\mathbf{0.a} = 0$
- 6. $\mathbf{a} \cdot \mathbf{b} = |\mathbf{a}| |\mathbf{b}|$ if and only if \mathbf{a} parallel to \mathbf{b} $\mathbf{a} \cdot \mathbf{b} = -|\mathbf{a}| |\mathbf{b}|$ if and only if \mathbf{a} and \mathbf{b} in opposite direction.
- 7. $\mathbf{a} \cdot \mathbf{b} = 0$ if and only if \mathbf{a} is perpendicular to \mathbf{b} with $\mathbf{a} \neq 0$, $\mathbf{b} \neq 0$
- 8. For unit vectors \mathbf{i} , \mathbf{j} and \mathbf{k} we have :-

$$\mathbf{i} \cdot \mathbf{i} = \mathbf{j} \cdot \mathbf{j} = \mathbf{k} \cdot \mathbf{k} = 1$$
 and

$$\mathbf{i.j} = \mathbf{j.k} = \mathbf{k.j} = 0$$

Proof

Proof for 1 to 4 are obvious

6. If vectors \mathbf{a} and \mathbf{a} parallel, the angle between \mathbf{a} and \mathbf{b} are 0^0 or 180^0 .

So,
$$\mathbf{a} \cdot \mathbf{b} = |\mathbf{a}| |\mathbf{b}| \cos 0^{\circ} = |\mathbf{a}| |\mathbf{b}|$$

or,
$$\mathbf{a} \cdot \mathbf{b} = |\mathbf{a}| |\mathbf{b}| \cos 180^{\circ} = -|\mathbf{a}| |\mathbf{b}|$$

7. If vectors \mathbf{a} and \mathbf{b} are perpendicular the angle between \mathbf{a} and \mathbf{b} is 90° so,

$$\mathbf{a} \cdot \mathbf{b} = |\mathbf{a}| |\mathbf{b}| \cos 90^{\circ} = 0$$

8. It is known that **i**, **j**, and **k** are perpendicular each other and the angle of two parallel vectors is zero, so we have :-

$$\mathbf{a} \cdot \mathbf{b} = (a_1 \mathbf{i} + a_2 \mathbf{j} + a_3 \mathbf{k}) \cdot (b_1 \mathbf{i} + b_2 \mathbf{j} + b_3 \mathbf{k})$$

$$= a_1 b_1 (\mathbf{i} \cdot \mathbf{i}) + a_1 b_2 (\mathbf{i} \cdot \mathbf{j}) + a_1 b_3 (\mathbf{i} \cdot \mathbf{k}) + a_2 b_1 (\mathbf{j} \cdot \mathbf{i}) + a_2 b_2 (\mathbf{j} \cdot \mathbf{j}) + a_2 b_3 (\mathbf{j} \cdot \mathbf{k})$$

$$+ a_3 b_1 (\mathbf{k} \cdot \mathbf{i}) + a_3 b_2 (\mathbf{k} \cdot \mathbf{j}) + a_3 b_3 (\mathbf{k} \cdot \mathbf{k})$$

Since

$$\mathbf{i} \cdot \mathbf{i} = \mathbf{j} \cdot \mathbf{i} = \mathbf{k} \cdot \mathbf{k} = 1$$

$$\mathbf{i} \cdot \mathbf{i} = \mathbf{j} \cdot \mathbf{j} = \mathbf{k} \cdot \mathbf{k} = 1$$
 and $\mathbf{i} \cdot \mathbf{j} = \mathbf{j} \cdot \mathbf{k} = \mathbf{k} \cdot \mathbf{j} = 0$

thus

$$\mathbf{a} \cdot \mathbf{b} = a_1 b_1 + a_2 b_2 + a_3 b_3$$

Example 3

Simplify

a)
$$(a - b) \cdot (a + b)$$

b)
$$(a + b) \cdot c - (a + c) \cdot b$$

Example 4

Given that $\mathbf{a} = 3\mathbf{i} + t\mathbf{j} - 2\mathbf{k}$, $\mathbf{b} = (1 - t)\mathbf{i} - 3\mathbf{j} + 4\mathbf{k}$, find t if \mathbf{a} is perpendicular to \mathbf{b} .

5.2 c) The Angle Between Two Vectors

If $\mathbf{a} = a_1 \mathbf{i} + a_2 \mathbf{j} + a_3 \mathbf{k}$ and $\mathbf{b} = b_1 \mathbf{i} + b_2 \mathbf{j} + b_3 \mathbf{k}$ are two vectors and θ is the angle between them. From the definition of $\mathbf{a} \cdot \mathbf{b}$,

$$\mathbf{a} \cdot \mathbf{b} = |\mathbf{a}| |\mathbf{b}| \cos \theta$$

$$\Rightarrow \cos \theta = \frac{\mathbf{a.b}}{|\mathbf{a} \| \mathbf{b}|}$$

$$\therefore \text{ The angle } \theta = \cos^{-1} \left(\frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}| |\mathbf{b}|} \right)$$

Example 5

If $|\mathbf{a}| = 4$, $|\mathbf{b}| = 3$ and $\mathbf{a} \cdot \mathbf{b} = 7$, find the angle between \mathbf{a} and \mathbf{b} .

Example 6

Find the interior angles of the triangle ABC whose vertices are A(1,3,5), B(-2,0,3) and C(3,1,-2).

5.2 d) <u>Direction Cosines for a Non-Zero Vector</u>

Consider the vector \overrightarrow{OP} where P is the point (a, b, c).

Then
$$\overrightarrow{OP} = a\mathbf{i} + b\mathbf{j} + c\mathbf{k}$$
 and $|\overrightarrow{OP}| = \sqrt{a^2 + b^2 + c^2}$

If OP makes angles of α , β and γ with the x, y and z-axis respectively, then $\cos \alpha$, $\cos \beta$ and $\cos \gamma$ are known as:

Direction cosines;

$$\cos \alpha = \frac{a}{\begin{vmatrix} \overrightarrow{OP} \end{vmatrix}}$$
, $\cos \beta = \frac{b}{\begin{vmatrix} \overrightarrow{OP} \end{vmatrix}}$, $\cos \gamma = \frac{c}{\begin{vmatrix} \overrightarrow{OP} \end{vmatrix}}$

Direction angles;

$$\alpha = \cos^{-1} \frac{a}{\begin{vmatrix} \rightarrow \\ OP \end{vmatrix}}$$
, $\beta = \cos^{-1} \frac{b}{\begin{vmatrix} \rightarrow \\ OP \end{vmatrix}}$, $\gamma = \cos^{-1} \frac{c}{\begin{vmatrix} \rightarrow \\ OP \end{vmatrix}}$

where
$$\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = 1$$
.
Notice that the unit vector $\stackrel{\hat{OP}}{OP} = \stackrel{\hat{OP}}{\stackrel{\rightarrow}{OP}} = \frac{a}{\stackrel{\rightarrow}{OP}} \mathbf{i} + \frac{b}{\stackrel{\rightarrow}{OP}} \mathbf{j} + \frac{c}{\stackrel{\rightarrow}{OP}} \mathbf{k}$

$$\begin{vmatrix} OP & | & OP &$$

Example 7

Find the direction cosine of the vector \overrightarrow{OP} where P is the point (3, -6, 2)

Example 8

Find the direction cosines and direction angles of

- a) a = 2i + 3j k
- b) b = 4i 2j + 3k

LECTURE 3 OF 7

TOPIC : 5.0 VECTORS

SUBTOPIC : 5.4 The Vector Product

LEARNING : At the end of the lesson students are able to:

OUTCOMES (a) find the vector product

(b) use the properties of vector product

CONTENT

5.4 a) The Vector Product

If θ is the angle between vector **a** and **b**, then

$$\mathbf{a} \times \mathbf{b} = |\mathbf{a}| |\mathbf{b}| \sin \theta \mathbf{u}$$

where $\hat{\bf u}$ is a unit vector in the direction of $\bf a \times \bf b$

or
$$\mathbf{u} = \frac{\mathbf{a} \times \mathbf{b}}{|\mathbf{a} \times \mathbf{b}|}$$

To determine the direction of $\mathbf{a} \times \mathbf{b}$, use the right hand, where the fingers turn from \mathbf{a} to \mathbf{b} and the thumb points in the direction of $\mathbf{a} \times \mathbf{b}$.

Note

$$\begin{aligned} \mathbf{i} \times \mathbf{j} &= \mathbf{k} &, & \mathbf{j} \times \mathbf{i} &= -\mathbf{k} \\ \mathbf{j} \times \mathbf{k} &= \mathbf{i} &, & \mathbf{k} \times \mathbf{j} &= -\mathbf{i} \\ \mathbf{k} \times \mathbf{i} &= \mathbf{j} &, & \mathbf{i} \times \mathbf{k} &= -\mathbf{j} \end{aligned}$$

The vector product of $\mathbf{a} = a_1 \mathbf{i} + a_2 \mathbf{j} + a_3 \mathbf{k}$ and $\mathbf{b} = b_1 \mathbf{i} + b_2 \mathbf{j} + b_3 \mathbf{k}$ is defined in terms of the expansion of the symbolic determinant;

$$\mathbf{a} \times \mathbf{b} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}$$
$$= (a_2 b_3 - a_3 b_2)\mathbf{i} - (a_1 b_3 - a_3 b_1)\mathbf{j} + (a_1 b_2 - a_2 b_1)\mathbf{k}$$

Example 1

Given $\mathbf{a} = 2\mathbf{i} + 3\mathbf{j} - 2\mathbf{k}$ and $\mathbf{b} = 4\mathbf{i} - 2\mathbf{j} + 3\mathbf{k}$, find $\mathbf{a} \times \mathbf{b}$.

Example 2

Given $\mathbf{a} = \mathbf{i} + 2\mathbf{j} + 3\mathbf{k}$ and $\mathbf{b} = -\mathbf{i} + 3\mathbf{j} - \mathbf{k}$.

- a) Find $\mathbf{a} \times \mathbf{b}$
- b) Prove that $\mathbf{a} \times \mathbf{b}$ is a vector which is perpendicular to the vector \mathbf{a} .

5.4 b) Properties of vector product

If \mathbf{a} and \mathbf{b} is a vector, m is a scalar, then

1.
$$\mathbf{a} \times \mathbf{b} = -\mathbf{b} \times \mathbf{a}$$

2.
$$(m\mathbf{a}) \times \mathbf{b} = m(\mathbf{a} \times \mathbf{b}) = \mathbf{a} \times (m \mathbf{b})$$

3.
$$\mathbf{a} \times (\mathbf{b} + \mathbf{c}) = (\mathbf{a} \times \mathbf{b}) + (\mathbf{a} \times \mathbf{c})$$

4.
$$(a + b) \times c = a \times c + b \times c$$

5.
$$\mathbf{a.(b \times c)} = (\mathbf{a \times b}) \cdot \mathbf{c}$$

6.
$$\mathbf{a} \times (\mathbf{b} \times \mathbf{c}) = (\mathbf{a.c})\mathbf{b} - (\mathbf{a.b})\mathbf{c}$$

7.
$$\mathbf{a} \times \mathbf{b} = \mathbf{0}$$
 if \mathbf{a} is parallel to \mathbf{b}

Example 3

Find all vectors of length $\sqrt{11}$ unit which are perpendicular to both $\mathbf{a} = \mathbf{i} + 2\mathbf{j} - \mathbf{k}$ and $\mathbf{b} = \mathbf{i} - 3\mathbf{k}$

Example 4

Given that a, b and r are three vectors whereas λ is a scalar such that $a \times r = b + \lambda a$ and $a \cdot r = 2$. By using the result $a \times (b \times c) = (a \cdot c)b - (a \cdot b)c$, show that $r = \frac{2a - a \times b}{|a|^2}$.

Example 5

Given a = 2i - j + 4k and b = -6i + 3j - 12k. By using the vector product show that a and b are parallel.

LECTURE 4 OF 7

TOPIC : 5.0 VECTORS

SUBTOPIC : 5.4 The Vector Product

LEARNING : At the end of the lesson students are able to:

OUTCOMES

(c) find the area of parallelogram and a triangle.

CONTENT

5.4 c) Area of Parallelogram

Area of parallelogram = $|\mathbf{a} \times \mathbf{b}|$

Area of triangle = $\frac{1}{2} |\mathbf{a} \times \mathbf{b}|$

Example 1

A plane contains points A(1,1,1), B(3,2,-1) and C(1,-4,2) and D. If A, B, C and D forms a parallelogram, find

- a) the coordinates of D
- b) the area of the parallelogram ABCD

Example 2

A plane contains points A(1,1,0), B(3,-2,1) and C(5,7,2). Find

- a) a vector normal to the plane
- b) the area of triangle ABC

TOPIC : 5.0 VECTORS

SUBTOPIC : 5.4 Application Of Vectors In Geometry

LEARNING OUTCOMES : At the end of the lesson students should be able to:

a) find equation of a straight line

CONTENT

5.4 a) Lines In Space

A **line** in space is a *straight line* which continues indefinitely in both directions and contains a continuous infinite set of points.

Suppose that R(x, y, z) is a point which is free to move on a line containing a fixed point $A(x_1, y_1, z_1)$. If $\mathbf{v} = a\mathbf{i} + b\mathbf{j} + c\mathbf{k}$ is a direction vector of the line, it is clear that a line consists precisely of those points for which the vector AR is parallel to \mathbf{v} , that is

In terms of components, it can be written as

$$x\mathbf{i} + y\mathbf{j} + z\mathbf{k} = (x_1\mathbf{i} + y_1\mathbf{j} + z_1\mathbf{k}) + t (a\mathbf{i} + b\mathbf{j} + c\mathbf{k})$$
So that $x = x_1 + ta$

$$y = y_1 + tb$$

$$z = z_1 + tc$$

$$(2)$$

Isolating t in each of these equations gives

$$\frac{x - x_1}{a} = \frac{y - y_1}{b} = \frac{z - z_1}{c} \tag{3}$$

So there are three ways of expressing the line in space:

- (1) is the vector equation of the line,
- (2) are the parametric equations of the line,
- (3) are the Cartesian/Symmetry equations of the line.

Remarks

If a straight line passes through $A(x_1, y_1, z_1)$ and parallel to $a\mathbf{i} + b\mathbf{j} + c\mathbf{k}$,

- Its vector equation is $\mathbf{r} = (x_1\mathbf{i} + y_1\mathbf{j} + z_1\mathbf{k}) + t(a\mathbf{i} + b\mathbf{j} + c\mathbf{k})$
- Its **parametric equations** are $x = x_1 + ta$ $y = y_1 + tb$ $z = z_1 + tc$

t is called the *parameter* and can take any real value.

• Its Cartesian / Symmetry equations are $\frac{x-x_1}{a} = \frac{y-y_1}{b} = \frac{z-z_1}{c}$.

Example 1

Find a vector equation of the line that contains points A(1,2,3) and B(-2,1,3)

Example 2

Find the vector equation, the parametric equations and the Cartesian equations of the line through (1, -2, 3) in the direction $4\mathbf{i} + 5\mathbf{j} - 6\mathbf{k}$

Example 3

A line has Cartesian equations $\frac{x-1}{3} = \frac{y-2}{4} = \frac{z-3}{5}$. Find a vector equation for a parallel line passing through the point with position vector $5\mathbf{i} - 2\mathbf{j} - 4\mathbf{k}$ and find the coordinates of the point on this line where y = 0.

Example 4

- a) Find parametric equations for the line l passing through the points A (2, 4, -1) and B (5, 0, 7).
- b) Where does the line intersect the xy-plane?

LECTURE 6 OF 7

TOPIC : 5.0 VECTORS

SUBTOPIC : 5.4 Application Of Vectors In Geometry

LEARNING OUTCOMES: At the end of the lesson students are able to:

- (a) find the angle between two straight lines.
- (b) find the equation of a plane.

CONTENT

5.4 b) The Angle Between Two Straight Lines

Suppose two straight lines vector equation are

$$\mathbf{r_1} = \mathbf{a_1} + t\mathbf{v_1}$$
$$\mathbf{r_2} = \mathbf{a_2} + s\mathbf{v_2}$$

With t, s are any scalar and θ is angle between two straight lines.

If θ is angle between two straight lines, its also θ between v_1 and v_2 . because of the lines are parallel.

$$\mathbf{v_1.} \ \mathbf{v_2} = |\mathbf{v_1}| |\mathbf{v_2}| \cos \theta$$

$$\cos\theta = \frac{\mathbf{v}_1 \cdot \mathbf{v}_2}{\left|\mathbf{v}_1 \right\| \mathbf{v}_2\right|}$$

Hence, the angle between two straight lines given by

$$\theta = \cos^{-1} \frac{\mathbf{v}_1 \cdot \mathbf{v}_2}{|\mathbf{v}_1| |\mathbf{v}_2|}$$

Two straight lines are perpendicular if $\mathbf{v_1} \cdot \mathbf{v_2} = 0$ and the straight lines are parallel if $\mathbf{v_1} = k\mathbf{v_2}$ for k scalar.

Example 1

The vector form of two straight lines equation are given by

and
$$\mathbf{p} = (2\mathbf{i} + 2\mathbf{j} - 4\mathbf{k}) + t(\mathbf{i} + 3\mathbf{j} - 3\mathbf{k})$$

 $\mathbf{q} = (\mathbf{i} + \mathbf{j} + \mathbf{k}) + s(\mathbf{i} + 2\mathbf{j} - 4\mathbf{k})$

with t and s scalar. Find the acute angle between the two straight lines.

Example 2

Find the acute angle between L_1 and L_2 for each of the following:

(a)
$$L_i$$
: $r = 3i + 2j + t(i + j + k)$

$$L_2: \frac{x-1}{2} = \frac{y+2}{-3} = \frac{z+1}{4}$$

(b)
$$L_1: x = 1, \frac{y-1}{-2} = \frac{z-3}{4}$$

$$L_2$$
 is the y-axis

Example 3

Show that the line L_1 with vector equation r = 2i - j + t(2i + j - k) is perpendicular to the line L_2 with Cartesian equations $\frac{x-1}{3} = \frac{y+1}{-2} = \frac{z}{4}$.

5.4 c) Plane

Planes equation in 3 dimension can be measure with this criteria:

- 1. A plane in space has normal vector $\mathbf{n} = a\mathbf{i} + b\mathbf{j} + c\mathbf{k}$ and that it passes through the fixed point A (x_1, y_1, z_1) or
- 2. A plane passes through 3 fixed point or
- 3. A plane has two vectors.

Suppose a plane in space has normal vector $\mathbf{n} = a\mathbf{i} + b\mathbf{j} + c\mathbf{k}$ and that it passes through the fixed point A (x_1, y_1, z_1) .

R(x, y, z) moves any point on the plane.

Now \overrightarrow{AR} is perpendicular to \mathbf{n} .

Remarks: Equation of plane can be expressed in vector form or Cartesian/ Symmetry form

Example 1

Find the Cartesian equation of the plane with normal vector $\mathbf{i} + 2\mathbf{j} + 3\mathbf{k}$ and containing the point (-1, 2, 4).

Example 2

Find the equation of the plane passes through A(-1, 2, 0), B(3, 1, 1) and C(1, 0, 3).

Example 3

Find the vector equation of the plane that contains (2,-1, 3) and is

- a) parallel to the xy plane
- b) parallel to the plane with equation 3x y + z = 2

Example 4

Show that the line L whose vector equation is $\mathbf{r} = 2\mathbf{i} - 2\mathbf{j} + 3\mathbf{k} + t(\mathbf{i} - \mathbf{j} + 4\mathbf{k})$ is parallel to the plane P whose vector equation $\mathbf{r} \cdot (\mathbf{i} + 5\mathbf{j} + \mathbf{k}) = 5$

Example 5

Find the symmetry equation of the plane passes through B(1,-1,3) and perpendicular to both the planes x - y + 2z = 3 and 2x + y - z = 3.

LECTURE 7 OF 7

TOPIC : 5.0 VECTOR

SUBTOPIC : 5.4 Application of Vectors In Geometry

LEARNING OUTCOMES: At the end of the lesson students are able to:

d) to find the angle between two planes

e) to find the angle between a line and a plane

f) to find the point of intersection between a line and a plane

CONTENT

5.4 d) The angle between two planes

Consider two planes P₁ and P₂ whose vector equations are

 $r.n_1 = d_1$ and $r.n_2 = d_2$

The angle between P_1 and P_2 is equal to the angle between the normal to P_1 and P_2 , i.e. the angle between n_1 and n_2 .

Therefore if θ is the angle between P_1 and P_2 , $\cos \theta = \frac{\mathbf{n}_1 \cdot \mathbf{n}_2}{|\mathbf{n}_1||\mathbf{n}_2|}$

Example 1

Find the angle between the two planes

$$3x - 2y + 5z = 1$$
 and $4x + 2y - z = 4$

Example 2

Find the acute angle between the two planes x + 5y + z = 0 and 2x - y + 2z = 3.

5.4 e) The angle between a line and a plane

Consider the line $\mathbf{r} = \mathbf{a} + \lambda \mathbf{v}$ and the plane $\mathbf{r}.\mathbf{n} = d$. The angle β between the line and the normal to the plane is given by

$$\cos \beta = \frac{\mathbf{v.n}}{|\mathbf{v}||\mathbf{n}|}, \quad \beta = \cos^{-1} \frac{v.n}{|v||n|}$$

If θ is the angle between the line and the plane then $\theta = 90^{\circ} - \beta$

Example 3

Find the angle between the straight line $\mathbf{r} = \begin{pmatrix} 6 \\ 5 \\ 3 \end{pmatrix} + t \begin{pmatrix} 4 \\ 0 \\ 1 \end{pmatrix}$ and the plane x + y - 3z = 2

5.4 f) Point of the intersection between a line and a plane

To find the point of the intersection between a line and a plane, we suppose to have a line through a plane. Let r = a + tv is a vector of the line and $r \cdot n = d$ is a plane. Where B the point of intersection between a line and a plane

From $\mathbf{r} = \mathbf{a} + t\mathbf{v}$,

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x_1 \\ y_1 \\ z_1 \end{pmatrix} + t \begin{pmatrix} a \\ b \\ c \end{pmatrix}, \quad x = x_1 + at, \quad y = y_1 + bt, \quad z = z_1 + ct$$

From the plane equation, r.n = d

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} \bullet \begin{pmatrix} p \\ q \\ r \end{pmatrix} = d , : px + qy + rz = d(1)$$

Substitute $x = x_1 + at$, $y = y_1 + bt$, $z = z_1 + ct$ into (1)

$$p(x_1 + at) + q(y_1 + bt) + r(z_1 + ct) = d$$

$$\therefore t = \frac{d - (px_1 + qy_1 + rz_1)}{pa + qb + rc}$$
, then substitute t into $x = x_1 + at$, $y = y_1 + bt$, $z = z_1 + ct$

Example 4

Find the vector equation of the line passing through the point (3, 1, 2) and perpendicular to the plane $\mathbf{r} \cdot (2\mathbf{i} - \mathbf{j} + \mathbf{k}) = 4$. Find also the point of intersection of this line and the plane.

Example 5

Find the point where the straight line $\mathbf{r} = (-4\mathbf{i} + \mathbf{j} + 9\mathbf{k}) + \lambda(-2\mathbf{i} + 4\mathbf{k})$ intersects the plane $\mathbf{r} \cdot (2\mathbf{i} + 2\mathbf{j} - \mathbf{k}) = 5$.