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LECTURE  1 OF 7 

TOPIC                       :  5.0 VECTORS 

SUBTOPIC               :  5.1 Vectors in Three Dimensions 

LEARNING              :  At the end of the lesson, students should be able to: 

OUTCOMES             

                                      (a)   determine the types of vectors 

                                      (b)   perform addition and scalar multiplication 

 

 

5.1 Vectors In 3-Dimensions 
 

The Cartesian coordinate for space are often called rectangular coordinate . 

 

 

                  z                                     This consist of a fixed point O, the origin, and three 

                                                         mutually perpendicular axes, Ox , Oy and Oz. The axes 

                                                         are placed in such a way that they form a right-handed 

                                                         set as shown in figure 2.1. 

                                                          

                                        y               Each pair of coordinate axes determines a plane called 

                  O                                    a coordinate plane. These are referred to as the xy- 

                                                         plane, the xz-plane and the yz-plane. 

  x                

              Figure 2.1 

 

               z                                          

                      P(1 , 2 , 3)                 Any point P in space can be specified by an ordered  

                                                        triple of numbers (a , b , c) where a , b and c are the  

                                                        steps in the direction of x, y and z axes  

                            3                          respectively, to P.                                       

            1                        y 

                                                        In figure 2.2, we have constructed the point P(1 , 2 , 3). 

                2 

x 

              Figure 2.2 

                                                       We now take unit vectors i, j and k in the direction of x, 

                 z                                     y and z axes respectively. 

                           P(1 , 2 , 3)            

                                                        If P(a , b , c) is any point in the space, then the position 

                              3k                      vector of P is 

                                        y                               ckbjai 


OP   or   cba ,,  

           i      O                                                                                                                                

                                                        In figure 2.3, the position vector of the point (1 , 2 , 3)    

                 2j                                    is  kji 32  . Conversely, the  point  whose  position   

 x                                                      vector  is kji 42  has coordinates (2 , –4 , 1). 

             Figure 2.3 
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5.1 a) Types of Vectors 

 

Position Vector 

A vector that starts at the origin is called a position vector. So, the position vector of B is the 

vector that starts from the  origin and ends at B; 


 OBb . Similarly, position vector of P is 


 OPp  
 

Zero Vector 

The zero vector , denoted by 0, has magnitude zero. Contrary to all the other vectors, it has no 

specific direction. 

 

Unit vector  

The unit vector of a vector a is a vector whose magnitude is 1 unit in the direction of a. 

The unit vector of a , 
a

a
a ˆ   

 

Parallel vectors 

If the vectors u1 and u2 are parallel, then they are scalar multiple of each other. 

Thus,   ,21 uu . 

 

Perpendicular Vector 

If vector a and b are perpendicular , hence the angle between a and b is 90


. 

 

 

5.2 b) Addition and Scalar Multiplication of Vectors 

 

Vector Arithmetic  

 

Vectors in space apply the same rules of addition , subtraction, scalar multiplication and also 

the magnitude just as they are in the plane. 

 

For any vectors  v 1 = a 1i + b 1j + c 1k  and  v 2 = a 2i + b 2j + c 2k , and for any scalar k, 

 

i)   v 1 = 
2

1

2

1

2

1 cba   

 

ii)    v 1 + v 2 = (a 1 + a 2)i + (b 1 + b 2)j + (c 1 + c 2)k 

        v 1 – v 2 = (a 1 –  a 2)i + (b 1 –  b 2)j + (c 1 –  c 2)k 

 

iii) kv 1 = ka 1i + kb 1j + kc 1k 

 

 

Example 1 

 

Find  2a – b  where  a = i + j + k  and  b = –i + 3j – 2k. 
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θ θ θ 

a a a 

b 

Example 2 
 

Find a unit vector u in the direction of the vector from A(1 , 0 , 1) to B(3 , 2 , 0). Hence, find 

a vector 6 units long in that direction. 

 

 

Example 3 

If  p = 2i + 3j + k and q = i + 2j – 2k, express in terms of i, j and k 

(a) p + q  (b) q – p     

 

 

 

 

 

LECTURE  2 OF 7 

TOPIC                       :  5.0 VECTORS 

SUBTOPIC               :  5.2 Scalar Product  

LEARNING          :  At the end of the lesson students should be able to: 

OUTCOMES 

   (a) find the scalar product 

(b) use the properties of scalar product 

(c) find the angle between two vectors 

(d) find the direction cosines for a non-zero vector 

 

 

5.2 a) The Scalar Product (Dot Product) 

 

The scalar product of two vectors is a = a1i + a2j + a3k  and  b = b1i + b2j + b3k is the  

operation which is written a.b and defined as 

          a . b =  a  b cos   ,  

 

where   (0 ≤   ≤ 180) is the angle between a and b .  

 

 

 

 

 

 

 

 

 

     a . b  >  0        a . b  =  0              a . b  <  0 

 

 

Definition 

  

The scalar product between a and b is also defined as :- 

b 
b 
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    a . b  =  332211 bababa         

 

Example 1  

 

Evaluate a . b  if a = 3i – 7k , b = –2j + 3k .  

 

 

Example 2 

 

Evaluate a) (2i – j) . (3i + 4k)   

b)  (3j – 2k) . (i + 2j – 7k ) 

 

 

5.2 b) Properties of the scalar product  

  

1.   a . a =  a 
2                                                   

2.   a . b =  b . a
 

3.   a . (b + c)  = a . b + a . c               

4.   (ma) . b = m (a . b) = a .( m b) 

5.   0.a = 0 

6.   a . b =  a b  if  and only if a parallel to b 

      a . b =  – a b  if and only if a and b in opposite direction. 

7.   a . b = 0 if and only if a is perpendicular to b with a  0,  b   0  

8.   For unit vectors  i, j and  k  we have :- 

i . i  =  j . j  =  k . k  =  1   and 

i . j  =  j . k  =  k . j  =  0  

 

Proof 

 

Proof for  1  to  4  are obvious 

 

6.  If vectors a and a parallel , the angle between a and b are 0
0
 or 180

0
.  

 

     So , a . b =  a b cos 0
o
  =  a b                                        = 0

o
 

                                                                                                 b           a        

      

or,   a . b =  a b cos 180
o
   = – a b                            = 180

o
                            

                                                                                    b                          a 

 

7.  If vectors a and b are perpendicular the angle between a and b is 90
o
 so, 
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      a . b =  a b cos 90
o 
 =  0                            

                                                                                         a 

 

 

 

8.  It is known that i, j, and k are perpendicular each other and the angle of two   

     parallel vectors is zero, so we have :- 

  

        a . b   =   (a1i + a2j + a3k) . ( b1i + b2j + b3k )   

        =  a1b1(i . i)  +  a1b2(i . j)  +  a1b3(i . k)   +  a2b1(j . i)  +  a2b2(j . j)  +  a2b3(j . k)       

            +  a3b1(k . i)  +  a3b2(k . j) + a3b3(k . k) 

    Since 

       i . i  =  j . j  =  k . k  =  1      and  i . j  =  j . k  =  k . j  =  0  

    thus 

a . b  = 332211 bababa   

 

Example 3 

 

Simplify       a) (a – b) . (a + b)   

  b) (a + b) . c – (a + c) . b 

 

 

Example 4  

 

Given that  a = 3i + tj – 2k  ,   b = (1 – t)i – 3j + 4k , find t if  a  is perpendicular to b. 

 

 

 

5.2 c) The Angle Between Two Vectors 

 

If  a= a1i +a2j + a3k and b = b1i + b2j + b3k are two vectors and  is the angle between them. 

From the definition of a . b , 

 

        a . b   = a b cos               

 cos   = 
 b  a 

b.a
 

  The angle  = cos
 –1 















 b  a 

b . a
 

 

 

 

 

b 
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Example 5     
 

If  a = 4 ,  b = 3 and  a . b = 7, find the angle between a and b . 

 

 

 

Example 6 

Find the interior angles of the triangle ABC whose vertices are A(1,3,5), B(-2,0,3) and 

C(3,1,-2).                                                                                                               

 

 

 

 

 

 

 

 

5.2 d) Direction Cosines for a Non-Zero Vector                                                         

 

          z                                         Consider the vector 


OP  where P is the point (a , b , c). 

                                                   Then 


OP  = ai + bj + ck  and  


OP  = 222
cba   

                      P(a , b, c)     

          O                    y         If 


OP  makes angles of  ,  and  with the x , y and z-axis 

                                                 respectively, then cos  , cos  and cos  are known as : 

                                                                                                         

                                                   Direction cosines; 

   




OP

cos
a

     ,  




OP

cos
b

 ,  




OP

cos
c

  

     

 

 

Direction angles; 





OP

cos 1 a
     ,  





OP

cos 1 b
 ,  





OP

cos 1 c
  

where  cos
 2
 + cos

 2
 + cos

 2
  =  1. 

Notice that the unit vector  




OP  =   




OP

OP
   =  



OP

a
 i +  



OP

b
 j +  



OP

c
 k 

                                           




OP    =  cos  i + cos  j + cos  k 

 

 

x  
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Example  7 

Find the direction cosine of the vector 


OP  where P is the point (3 , -6 , 2) 

 

 

 

 

Example 8  

 

Find the direction cosines and direction angles of  

   a)  a = 2i + 3j - k  

   b)  b = 4i – 2j + 3k 

 

 

 

 

 

 

 

 

 

 

 

    

LECTURE 3 OF 7 

TOPIC  : 5.0 VECTORS 

SUBTOPIC  : 5.4 The Vector Product 

LEARNING           : At the end of the lesson students are able to: 

OUTCOMES                (a)   find the vector product 

                                       (b)   use the properties of vector product 

                       

 

CONTENT 

 

5.4 a) The Vector Product 

 

If   is the angle between vector  a and  b, then  

 a  b  =  absin  


u  

where  


u   is a unit vector in the direction of   a  b   

 or        


u  = 
ba

ba




 

 

To determine the direction of  a  b ,   use the right hand, where the fingers turn from a to b 

and the thumb points in the direction of  a  b  . 



Mathematics  QS 025                                 Chapter 5  :  Vectors   

  

 123 

 

  

 

  a  b   
 

 

       b 

 

 

 

     a 

Note 

       
       

                                                                         

                                                                        i  j = k    ,    j  i = –k 

                                                                        j  k = i    ,    k  j = –i 

                                    k  i = j    ,    i  k = –j  

                                           
 

The vector product of  a = a 1i + a 2j + a 3k  and  b = b 1i + b 2j + b 3k  is defined in terms of  

the expansion of the symbolic determinant ; 

      a  b    =  1 2 3

1 2 3

a a a

b b b

i j k

 

                       =  (a 2 b 3 –  a 3 b 2)i – (a 1 b 3 –  a 3 b 1)j + (a 1 b 2 –  a 2 b 1)k 

Example 1 

 

Given  a = 2i +3j – 2k  and  b = 4i – 2j + 3k , find  a  b. 

 

 

Example 2  

 

Given a = i + 2j + 3k and b = –i + 3j – k. 

a)   Find   a  b     

b)   Prove that  a  b  is a vector which is perpendicular to the vector  a. 

 

 

 

 

5.4 b) Properties of vector  product 

 

If   a  and  b is a vector , m is a scalar , then 

                                                    

1.   a  b = – b  a 

2.   (ma) x b = m(a  b) = a (m b)  

3.   a  (b + c) = (a  b) + (a  c)  

k 

i j 
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4. ( a + b) x c = a x c + b x c  

5. a.(b x c ) = ( a x b ) . c 

6. a x ( b x c ) = ( a.c)b – (a.b)c 

7.  a  b =  0  if  a is parallel to b 

 

 

 

 

 

Example 3 

 

Find all vectors of length 11  unit which are perpendicular to both  a = i + 2j – k and 

b = i – 3k 

 

 

   

 

 

Example 4 
 

Given that a , b and r are three vectors whereas  is a scalar such that abra  and 

2 ra .By using the result      cbabcacba  , show that 
2

2

a

baa
r


 . 

 

  

 

Example 5 

 

Given   and   . By using the vector product show that 

and  are parallel. 
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LECTURE 4 OF 7 

TOPIC  : 5.0 VECTORS 

SUBTOPIC  : 5.4 The Vector Product 

LEARNING           : At the end of the lesson students are able to: 

OUTCOMES                 

                        (c)   find the area of parallelogram and a triangle.  

 

CONTENT 

 

5.4 c) Area of Parallelogram 

 

 

 

 

 

 

Area of parallelogram = a b  

 

                

 

 

 

             Area of triangle = 
1

2
a b  

 

 

Example 1  

 

A plane contains points A(1,1,1), B(3,2,-1) and C(1,-4,2) and D. If A, B,C and D forms a 

parallelogram, find  

        a) the coordinates of D 

        b) the area of the parallelogram ABCD 

 

 

 

 

 

Example 2 

A plane contains points A(1,1,0) , B(3,-2,1) and C(5,7,2). Find  

      a) a vector normal to the plane 

      b) the area of triangle ABC 

 

 

 

 

 

 

 

 

a 

b 

a 

b 
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TOPIC  : 5.0 VECTORS 

 

SUBTOPIC  : 5.4 Application Of Vectors In Geometry 

 

LEARNING    : At the end of the lesson students should be able to: 

OUTCOMES 

                                      a) find equation of a straight line  

CONTENT                                

5.4 a) Lines In Space 

 

A line in space is a straight line which continues indefinitely in both directions and contains a 

continuous infinite set of points. 

                                                            

                                                                 

                                                    

                                                     O 

  
Suppose that R(x , y , z) is a point which is free to move on a line containing a fixed point  

A(x1, y1, z1). If v = ai + bj + ck is a direction vector of the line, it is clear that a line consists 

precisely of those points for which the vector AR is parallel to v, that is 

 

            


AR  =  tv for some scalar t 

            


OR  – 


OA   =  tv 

            


OR  = 


OA  + tv 

       or     r  = a + tv                        (1) 

In terms of components, it can be written as 

             xi + yj + zk  =  (x1i + y1j + z1k) + t (ai + bj + ck) 

So that  x = x1 + ta 

              y =  y1 + tb                       (2) 

              z = z1 + tc   

 

Isolating t in each of these equations gives 

         
a

xx 1
 = 

b

yy 1
 = 

c

zz 1
          (3) 

 

So there are three ways of expressing the line in space : 

   (1)  is the vector equation of the line, 

   (2)  are the parametric equations of the line, 

   (3)  are the Cartesian/ Symmetry equations of the line. 

Remarks  
If a straight line passes through A(x1, y1, z1)  and parallel to ai + bj + ck , 

R 

A 
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   Its vector equation  is r  =  (x1i + y1j + z1k) + t (ai + bj + ck) 

 

   Its parametric equations are    x = x1 + ta 

                                                        y =  y1 + tb 

                                                        z = z1 + tc  

     t is called the parameter and can take any real value. 

 

   Its Cartesian / Symmetry equations  are   111

c

z -z 
  

b

y -y 
  

a

x - x
 . 

 

Example 1  

 

Find a vector equation of the line that contains points A(1,2,3) and B(-2,1,3) 

 

 

 

Example 2  

 

Find the vector equation, the parametric equations and the Cartesian equations of the line 

through (1, –2, 3) in the direction 4i + 5j – 6k 

 

 

 

 

Example 3 

A line has Cartesian equations  
3

1x
 = 

4

2y
 =

5

3z
. Find a vector equation for a parallel 

line passing through the point with position vector 5i – 2j – 4k and find the coordinates of the 

point on this line where y = 0. 

 

 

 

 

 

Example 4 

a) Find parametric equations for the line l  passing through the points  A (2 , 4 , –1) and 

      B (5 , 0 , 7). 

 

b) Where does the line intersect the xy-plane? 
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LECTURE 6 OF 7 

 

TOPIC  : 5.0 VECTORS 

 

SUBTOPIC  : 5.4 Application Of Vectors In Geometry 

 

LEARNING OUTCOMES :  At the end of the lesson students are able to: 

               

(a) find the angle between two straight lines.  

(b) find the equation of a plane. 

 

CONTENT           
 

5.4 b) The Angle Between Two Straight Lines 

 

Suppose two straight lines vector equation are  

 

 r1 = a1 + tv1 

 r2 = a2 + sv2 

     

With t, s are any scalar and    is angle between two straight lines.  

                                                                                      r1 = a1 + tv1 

                                            v1 

 

                                                               v2 

                                                                                                     r2 = a2 + sv2 

                                                                           

                                   

 

 

 

                

                   

If   is angle between two straight lines, its also    between v1 and v2 . because of the lines 

are parallel. 

  v1 . v2  = θcosvv 21  

 

  

21

21

vv

.vv
θ cos  

 

 

Hence, the angle between two straight lines given by 

  θ  = 1cos 

21

21

vv

vv 
 

Two straight lines are perpendicular if v1 . v2 = 0 and the straight lines are parallel if  

v1 = kv2 for k scalar. 
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Example 1 

 

The vector form of two straight lines equation are given by 

 p = ( 2i + 2j - 4k ) +  t( i + 3j - 3k ) 

and      q = ( i + j + k) + s( i + 2j - 4k ) 

with t and s scalar. Find the acute angle between the two straight lines. 

 

 

 

 

 

 

Example 2  

Find the acute angle between 
1

L  and 
2

L for each of the following:  

(a) )(23:
1

kjitjirL   

      
4

1

3

2

2

1
:

2









 zyx
L  

(b) 
4

3

2

1
,1:

1









zy
xL  

      
2

L is the y -axis 

 

 

 

 

 

Example 3  

Show that the line 
1

L with vector equation )2(2 kjitjir  is perpendicular to the line 

2
L  with Cartesian equations 

42

1

3

1 zyx








.  

 

 

 

 

 

 

 

    

5.4 c) Plane 

Planes equation in 3 dimension can be measure with this criteria : 

1.   A plane in space has normal vector n = ai + bj + ck and that it passes through the fixed    

      point A (x1 , y1 ,z1) or  

2.   A plane passes through 3 fixed point or 

3.   A plane has two vectors. 

 

Suppose a plane in space has normal vector n = ai + bj + ck and that it passes through the 

fixed point A (x1 , y1 ,z1). 
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 R(x , y , z) moves any point on the plane. 

 Now 


AR  is perpendicular to n. 

 

                                                                  n = ai + bj + ck 

 

 

  

                                                      R(x, y, z) 

 

                                          A (x1, y1,z1)   

 


AR  . n = 0 

      (


OR  – 


OA ) . n = 0 

      (r – a) . n = 0 

      r . n – a . n = 0 

      r . n  =  a . n 

      r . n  =  p     where  p = a . n 

Remarks: Equation of plane can be expressed in vector form or Cartesian/ Symmetry form  

 

 

Example 1 

Find the Cartesian equation of the plane with normal vector i + 2j + 3k and containing the 

point (-1 , 2 , 4). 

 

 

 

 

Example  2 

Find the equation of the plane passes through A(-1 , 2 , 0) , B(3 , 1 , 1) and C(1 , 0 ,3). 

 

    

                

Example 3 

Find the vector equation of the plane that contains (2,-1, 3) and is 

a) parallel to the xy plane 

b) parallel to the plane with equation 3x – y + z = 2 

 

 

Example 4 

Show that the line L whose vector equation is  r = 2i - 2j + 3k + t ( i – j + 4k )  is parallel to 

the plane  P whose vector equation   r . (  i + 5j + k ) = 5 
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Example 5  

Find the symmetry equation of the plane passes through B(1,-1,3) and perpendicular to both 

the planes x – y + 2z = 3 and 2x + y – z = 3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

LECTURE 7 OF 7 

 

TOPIC             : 5.0 VECTOR 

 

SUBTOPIC  :  5.4 Application of Vectors In Geometry 

 

LEARNING   OUTCOMES:  At the end of the lesson students are able to: 

                                       d) to find the angle between two planes 

      e) to find the angle between a line and a plane 

      f) to find the point of intersection between a line and a plane 

CONTENT 

5.4 d) The angle between two planes  

 

 

 

 

 

 

 

 

 

 

Consider two planes P1  and P2 whose vector equations are  

r.n1=d1  and   r.n2=d2 

The angle between P1 and P2 is equal to the angle between the normal to P1 and P2, i.e. the 

angle between n1 and n2. 

 

 
 

P1 

n1 

P2 
n2 
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Therefore if θ is the angle between P1 and P2,

  21

21

nn

.nn
θ cos    

Example 1 
Find the angle between the two planes  

 

       1523  zyx      and     424  zyx   

 

 

Example 2 

Find the acute angle between the two planes 5 0x y z    and 2 2 3x y z   . 

 

 

 

 

5.4 e) The angle between a line and a plane  

 

 

 

 

 

 

 

 

 

Consider the line r = a + λv and the plane r.n = d . The angle  between the line and the 

normal to the plane is given by  

  
nv

nv.
cos, cos 1 

nv

v.n
 

If   is the angle between the line and the plane then   90  

Example 3 

Find the angle between the straight line r = 

6 4

5 0

3 1

t

   
   

   
   
   

 and the plane 3 2x y z    

 

 

 

 

 

v 

n 
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5.4 f)    Point of the intersection between a line and a plane   

To find the point of the intersection between a line and a plane, we suppose to have a line 

through a plane. Let r = a + tv is a vector of the line and  r.n = d is a plane.  Where B the 

point of intersection between  a line and  a plane 

 

 

 

 

From r = a + tv,  



















































c

b

a

t

z

y

x

z

y

x

1

1

1

,  atxx  1 ,  btyy  1 , ctzz  1  

From the plane equation, r.n = d 

                                    d

r

q

p

z

y

x



































, drzqypx  ………. (1) 

Substitute atxx  1 ,  btyy  1 , ctzz  1  into (1) 

                dctzrbtyqatxp  )()()( 111  

 
rcqbpa

rzqypxd
t




 111  , then substitute t into  atxx  1 ,  btyy  1 , ctzz  1  

 

Example 4 

Find the vector equation of the  line passing through the point ( 3 , 1 , 2 ) and perpendicular to 

the plane  r . ( 2i – j + k ) = 4  .Find also the point of intersection of this line and the plane. 

 

 

 

Example 5 

 

Find the point where the straight line r = ( -4i + j + 9k ) +  ( -2i + 4k ) intersects the plane 

r.( 2i + 2j – k) = 5. 

 

 

 

r 

x B (x,y,z) 


