PROGRAM EXCEL MATHS SLOT 8 QS015

- 1. Find the inverse function of $f(x) = e^{x+1} 2$. Determine the domain and range of the inverse function.
- 2. Given $f(x) = \sqrt{x}$, g(x) = x 1 and $h(x) = e^x$. Find $f \circ g \circ h$ and determine its domain.
- 3. Given $f(x) = \frac{3x}{x-2}$, $x \ne 2$.
 - a) Find $f \circ f$. State the values of x for which $f \circ f$ is undefined.
 - b) Find f^{-1} and state its domain
 - c) If $(f \circ g)(x) = 2x + 1$, find the function g(x)
- 4. Given that functions g and h are defined as

$$g(x) = 3|x|$$
$$h(x) = x - 2$$

- State the domain and range of function g and ha)
- Find $g \circ h$ and sketch its graph b)
- Is $g \circ h$ a one to one functions? Why? c)
- What is the possible domain of $g \circ h$ if its inverse exist? d)
- 5. Given f(x) = x + 5 and $h(x) = 3 x^2$.
- a) Find $(f \circ h)(x)$
- b) Find $(h \circ f)(x)$
- c) Find the value of x such that $(f \circ h)(x) = (h \circ f)(x)$

ANSWER:

1.
$$f^{-1}(x) = -1 + \ln(x+2)$$
; $D_{f^{-1}} = (-2, \infty)$; $R_{f^{-1}} = (-\infty, \infty)$

2.
$$(f \circ g \circ h)(x) = \sqrt{e^x - 1}$$
 ; $D_{f \circ g \circ h} = [0, \infty)$

3. a)
$$(f \circ f)(x) = \frac{9x}{x+4}$$
; -4,2 b) $f^{-1}(x) = \frac{2x}{x-3}$; $D_{f^{-1}} = (-\infty, 3) \cup (3, \infty)$

c)
$$g(x) = \frac{2x+1}{x-1}$$

a)
$$D_{g(x)}=\Re$$
 , $D_{h(x)}=\Re$
$$R_{g(x)}=\left[0,\infty\right] \ , \qquad R_{h(x)}=\Re$$

b)
$$g \circ h = 3|x-2|$$

d)
$$D_{g \circ h(x)} = (-\infty, 2] \text{ or } [2, \infty)$$

5.

(a)
$$8 - x^2$$

(b)
$$-x^2 - 10x - 22$$

$$(c)^{-3}$$