PROGRAM EXCEL MATHS SLOT $8 \mid$ QS015

1. Find the inverse function of $f(x)=e^{x+1}-2$. Determine the domain and range of the inverse function.
2. Given $f(x)=\sqrt{x}, g(x)=x-1$ and $h(x)=e^{x}$. Find $f \circ g \circ h$ and determine its domain.
3. Given $f(x)=\frac{3 x}{x-2}, x \neq 2$.
a) Find $f \circ f$. State the values of x for which $f \circ f$ is undefined.
b) Find f^{-1} and state its domain
c) If $(f \circ g)(x)=2 x+1$, find the function $g(x)$
4. Given that functions g and h are defined as

$$
\begin{aligned}
& g(x)=3|x| \\
& h(x)=x-2
\end{aligned}
$$

a) State the domain and range of function g and h
b) Find $g \circ h$ and sketch its graph
c) Is $g \circ h$ a one to one functions? Why?
d) What is the possible domain of $g \circ h$ if its inverse exist?
5. Given $f(x)=x+5$ and $h(x)=3-x^{2}$.
a) Find $(f \circ h)(x)$
b) Find $(h \circ f)(x)$
c) Find the value of x such that $(f \circ h)(x)=(h \circ f)(x)$

PROGRAM EXCEL MATHS SLOT $8 \mid$ QS015

ANSWER :

1. $f^{-1}(x)=-1+\ln (x+2) ; D_{f^{-1}}=(-2, \infty) ; R_{f^{-1}}=(-\infty, \infty)$
2. $(f \circ g \circ h)(x)=\sqrt{e^{x}-1} \quad ; D_{f \circ g \circ h}=[0, \infty)$
3. a) $(f \circ f)(x)=\frac{9 x}{x+4} ;-4,2 \quad$ b) $f^{-1}(x)=\frac{2 x}{x-3} ; D_{f^{-1}}=(-\infty, 3) \cup(3, \infty)$
c) $g(x)=\frac{2 x+1}{x-1}$
4.

a) $D_{g(x)}=\mathfrak{R} \quad, \quad D_{h(x)}=\mathfrak{R}$

$$
R_{g(x)}=[0, \infty], \quad R_{h(x)}=\mathfrak{R}
$$

b) $\quad g \circ h=3|x-2|$
c) not one to one
d) $\quad D_{g \circ h(x)}=(-\infty, 2]$ or $[2, \infty)$
5.
(a) $8-x^{2}$
(b) $-x^{2}-10 x-22$
(c) -3

