LECTURE 1 OF 7

TOPIC : 5.0 FUNCTIONS AND GRAPHS

SUBTOPIC: 5.1 Functions

LEARNING OUTCOMES : At the end of the

 lesson, students are able to:(a) define a function.
(b) use the vertical line test to determine whether a graph represent a function.
(c) use the algebraic approach or horizontal line test to determine whether a function is one-toone.

CONTENT

Definition

Relation

A relation is a correspondence between a first set, called the domain, and the second set, called the range, such that each member of the domain corresponds to at least one member of the range.

Example 1:

Let $A=\{3,4,5\}$ and $B=\{6,10,12\}$. Consider the relation "is a factor of". This relation can be displayed using the arrow diagram as follows:

The relation can also written in the form of ordered pairs as $\{(3,6),(3,12),(4,12),(5,10)\}$.

Types of relation

- One to one
- One to many
- Many to one
- Many to many

Function

A function is defined as a relation where every element in the domain has a unique image in the range.
\checkmark In other words, a function are:
i) one to one relation.
ii) Many to one relation.

Examples of functions:

One-to-one relation and onto

One-to-one relation and not onto

Many to one relation and not onto

Many to one relation and not
\checkmark Mapping is another name for function.
\checkmark A mapping or function f from set A to set B is usually written as $f: A \rightarrow B$.
\checkmark If an element x, of set A is mapped into an element y in set B , so y is an image of x.
\checkmark The image of x is thus represented by $f(x)$ and we write $y=f(x)$

Example 2:

Let $\mathrm{A}=\{1,2,3,4\}$ and $\mathrm{B}=\{$ set of integers $\}$. Illustrate the function $f: x \rightarrow x+3$

Solution:

The graph of a function

- most common method of representing function is by a graph
- each graph is drawn with the coordinate axes
- horizontal axis (x - axis) representing the domain
- vertical axis (y - axis) representing the range.

Vertical line Test

The vertical line test is a graphical method use to determine whether a relation in x is a function. If any vertical line drawn intersects the curve $y=f(x)$ only at one point, then $f(x)$ is a function of x.

Example 3:

Consider the graphs shown below and state whether they represent functions.

One -to one functions

In the above arrow diagram, every element of set X is mapped to exactly one element of set Y. Function f which has this property is known as a one-to-one function.

In the above arrow diagram, two elements, namely 0 and 1 , of set X are mapped to the same element of 4 of set Y, that is $g(0)=g(1)=4$. As such, function g is not a one-to-one function.
There are two methods to determine whether a function is one-to-one:
(a) Horizontal Line test (Graphically Method)

The horizontal line test is a graphical method used to determine is a function is one to one. In general, if any horizontal line drawn intersects the graph of the function only at one point, then the function is one-to-one function.

(b) Algebraic Method

A function f with a domain X is called a one-to-one function if two elements of X have the same image, that is $f\left(x_{1}\right) \neq f\left(x_{2}\right)$ for $x_{1} \neq x_{2}$. To prove that a function is one-to-one, we must show that

$$
f\left(x_{1}\right)=f\left(x_{2}\right) \text { implies that } x_{1}=x_{2}
$$

Example 4:

Use the horizontal line test (graphical method) to determine whether each of the following functions is one-to-one function.
(a) $f(x)=x(x-2)$
(b) $f(x)=x^{3}-1$
(c) $f(x)=\sqrt{x+1}$
(d) $f(x)=\frac{-2}{x+1}$
(e) $f(x)=|x-1|$

Solution:

(a) $f(x)^{\uparrow}$

Example 5:

By using the algebraic method, determine whether f is a one to one function or not
(a) $f(x)=2 x+3$
(b) $f(x)=x^{2}+2 x-5$
(c) $f(x)=\frac{2}{x+3}$
(d) $f(x)=\sqrt{x+4}$
(e) $f(x)=|x-3|$

Solution:

LECTURE 2 OF 7

TOPIC : 5.0 FUNCTIONS AND GRAPHS

SUBTOPIC: 5.1 Functions

LEARNING OUTCOMES : At the end of the

 lesson, students are able to:(d) sketch the graph of a function
(e) state the domain and range of a function

CONTENT

Basic shape of a function
(i) Quadratic function
(a) $f(x)=x^{2}$

(ii) Cubic function
(a) $f(x)=x^{3}$

(b) $f(x)=-x^{2}$

(b) $f(x)=-x^{3}$

(iii) surd function

The graph exist only for $\mathrm{x} \geq 0$
(a) $f(x)=\sqrt{x}$

(iv) Reciprocal function
(a) $f(x)=\frac{1}{x}$
(b) $\quad f(x)=-\frac{1}{x}$

(v) Absolute value function, $|\mathbf{f}(\mathbf{x})|$

$$
f(x)=|x|
$$

Example 1:

 Sketch the graph of the following functions.(a) $f(x)=-5$
(b) $f(x)=-x+2$
(c) $f(x)=x^{2}-x-2$
(d) $f(x)=x^{2}(2-x)$
(e) $f(x)=\sqrt{x+5}$
(f) $f(x)=|x-2|$
(g) $f(x)=\frac{1}{x-2}$
(h) $f(x)= \begin{cases}-x^{2}, & x<0 \\ x+5, & x \geq 0\end{cases}$

Solution:

Domain and Range

Given $y=f(x)$

- Domain, D_{f}, is the set of the values of x in which $f(x)$ is defined.
- Range, R_{f}, is the set of all possible value of $f(x)$ as x varies throughout the domain . R_{f} is a collection of all image of f.
- Domain and range of function can be written in the form of sets or interval notations.
- There are two methods to find the domain and range of a function $f(x)$
(i) Graphically
(ii) Algebraic

The domain and the range of the function can be determined by means of graph, the horizontal axis representing the domain and the vertical axis, the range.

Example 2:

Sketch the graph of the following functions. Hence, find its domain and range.
(a) $f(x)=2-2 x$
(b) $f(x)=x^{2}-4 x-5$
(c) $f(x)=-x^{3}+8$
(d) $f(x)=\sqrt{x-3}$
(e) $f(x)=-\frac{1}{2 x-5}$
(f) $f(x)=|3 x-1|$
(g) $f(x)=\left\{\begin{array}{cc}-x+2, & -1 \leq x \leq 1 \\ 3, & x=1 \\ x, & x>1\end{array}\right.$

Solution:

LECTURE 3 OF 7

TOPIC : 5.0 FUNCTIONS AND GRAPHS

SUBTOPIC : 5.2 Composite Functions

LEARNING OUTCOMES : At the end of the

 lesson, students are able to:(a) represent composite function by an arrow diagram
(b) find composite functions.
(c) find one of the functions when the composite and the other function are given.

CONTENT

Definition:

Consider two functions $f(x)$ and $g(x)$.
We define $f \circ g(x)=f[g(x)]$ meaning that the output values of the function g are used as the input values for the function f .

This can be represented in an arrow diagram:

Note that $(f o g)(x) \neq f(x) g(x)$.
Similarly, we define $g \circ f(x)=g[f(x)]$ meaning that the output values of the function f are used as the input values for the function g.

This can be represented in an arrow diagram.

Example 1:

If $f(x)=3 x+1$ and $g(x)=2-x$, find as a function of x
(a) $f \circ g$
(b) $g \circ f$

Solution:

Note that $(f \circ g)(x) \neq(g \circ f)(x)$.

Example 2:

The function f and g are defined by $f: x \rightarrow 3 x^{2}+1$ and $g: x \rightarrow 5 x-7$, find:
(a) $f g(x)$
(b) $f f(x)$
(c) $\operatorname{gg}(x)$

Solution:

Example 3:

If $f(x)=2 x-1$ and $g(x)=x^{3}$, find the values of :
(a) $g f(3)$
(b) $f g(3)$
(c) $f^{2}(3)$

Solution:

$$
\text { Note that } f^{2}(3) \neq[f(3)]^{2}
$$

Example 4:

Given that $f(x)=2 x, g(x)=1+x$ and $h(x)=x^{2}$, find the functions:
(a) $\operatorname{fgh}(x)$
(b) $h g f(x)$
(c) $\operatorname{ghf}(x)$

Solution:

Example 5:
The functions f, g and h are defined by $f(x)=2-x$, $g(x)=\frac{3}{x+1}$ and $h(x)=2 x-1$
(a) Show that $f^{2}(x)=x$.
(b) Find an expression for $g^{2}(x)$,
(c) Solve the equation $h^{3}(x)=x$.

Solution:

Example 6:
Given that $g(x)=x^{2}+1$ and $g f(x)=x^{2}+4 x+5$, find the function of $f(x)$.

Solution:

Example 7:

If $g(x)=3+x$ and $f g(x)=x^{2}+6 x+10$, find the function of $f(x)$.

Solution:

Example 8:

The function f and g are defined by $f(x)=x+4$, $g(x)=x^{2}$ respectively. Find the function of h such that $h g f(x)=x^{2}+8 x+3$

Solution :

Example 9:

If $\operatorname{fg}(x)=4 x^{2}-2 x+1$ and $g(x)=2 x+1$, find the function of $g f(x)$. Subsequently, find the values of x that satisfy $f g(x)=g f(x)$.

Solution:

LECTURE 4 OF 7

TOPIC : 5.0 FUNCTIONS AND GRAPHS

SUBTOPIC : 5.3 Inverse Functions

LEARNING OUTCOMES : At the end of the lesson, students are able to:
(a) determine the inverse of a function.
(b) determine whether a function has an inverse and find the inverse of a function.

CONTENT

The Inverse Of A Function

Fig. 1 shows the mapping of the domain $\{-3,0,1,2\}$ by the function $f(x)=3 x-2$.
Verify that the range is $\{-11,-2,1,4\}$.

Domain Range
Fig. 1

Is there a function that will map back to the domain? The function $f(x)$ in Fig. 1 mapped x onto y where $y=3 x-2$. Now we wish to start with y and return to x.
If $3 x-2=y$. So, $x=\frac{y+2}{3}$.
So this new function will map y onto $\frac{y+2}{3}$
Testing this with $y=-11$, we get $\frac{-11+2}{3}=-3$ which is the original value of x.

We can check with other values. Such a function, if it exists, is called the inverse function of f and is written as f^{-1}. (Read this as 'inverse f^{\prime}). Usually we take x as the 'starting' letter so we have $f^{-1}(x)=\frac{x+2}{3}$.
For the function $f(x)=3 x-2$, its inverse $f^{-1}(x)=\frac{x+2}{3}$.

The inverse of a function f exists if and only if f oneto one function.

If $f: x \rightarrow y$ is a function, then $y \rightarrow x$ is also a function. Thus, the inverse function of f can be written as $f^{-1}: y \rightarrow x$. To verify that f^{-1} is the inverse of f, show that

$$
f\left[f^{-1}(x)\right]=x \quad \text { or } \quad f^{-1}[f(x)]=x
$$

Example 1:

 Show whether the following functions are one-to-one. For functions that are one-to-one, find their inverse functions.(a) $f(x)=3 x+2$
(b) $g(x)=x^{2}+4 x+1$
(c) $p(x)=-x^{2}+5, x \geq 0$
(d) $q(x)=\frac{2}{x}$
(e) $k(x)=|x+3|$

LECTURE 5 OF 7

TOPIC : 5.0 FUNCTIONS AND GRAPHS

SUBTOPIC : 5.3 Inverse Functions

LEARNING OUTCOMES : At the end of the

 lesson, students are able to:(c) Identify the domain and range of an inverse function.

CONTENT

Domain and Range of Inverse function

From the diagram :
Domain of $f(x)=$ Range of $f^{-1}(x)$
Range of $f(x)=$ Domain of $f^{-1}(x)$

Graph of Inverse Function

With the property of the inverse function $D_{f}=R_{f}-\frac{1}{2}$ and $R_{f}=D_{f-1}$, that means point (x, y) of $f(x)$ is changed to (y, x) of $f^{-1}(x)$ and achieved by reflecting the points about $y=x$.
Graph of $y=f^{-1}(x)$ is obtained by reflecting the graph of $y=f(x)$ about the line $y=x$.

Example 1:
Find the inverse of $f(x)=\frac{1}{1-x}+2, x \neq 1$ and state the domain of the inverse function.

Solution:

Example 2:

Function f and g are defined as $f(x)=\frac{2 x-5}{x+3}$ and $g(x)=\frac{3 x+5}{2-x}$.
(a) Find $f g(x)$ and deduce $f^{-1}(x)$
(b) Determine the domain and range of $f^{-1}(x)$

Solution:

Example 3:

The functions f and g are defined by $f(x)=2 x+3$ and $g(x)=x-1$. Find
(a) f^{-1} and g^{-1}
(b) $g f^{-1}(x)$ and $f g^{-1}(x)$
(c) $(f g)^{-1}(x)$
(d) $f^{-:} g^{-1}(x)$

Solution :

Example 4:

Given that $f(x)=(x-1)^{2}+2$ for $x \geq 1$. Find the $f^{-1}(x)$ and state its domain and range.
Hence, sketch the graph of $f(x)$ and $f^{-1}(x)$ on the same axis.

Solution :

LECTURE 6 OF 7

TOPIC : 5.0 FUNCTIONS AND GRAPHS
 SUBTOPIC : 5.4 Exponential and Logarithmic Functions

LEARNING OUTCOMES : At the end of the

 lesson, students are able to:(a) determine the relationship of exponential and logarithmic functions graphically and algebraically. (b) find the domain and range of an exponential and logarithmic functions.

CONTENT

Exponential function is $f(x)=a^{x}$ where $x \in R, a>0$ and $a \neq 1$. Constant a is known as the base and variable x is known as the exponent.
Important class of exponential function is one where the base is given by Euler's number, e. Euler's number, e is
an irrational number where $=\lim _{m \rightarrow \infty}\left(1+\frac{1}{m}\right)^{m}$.
Value of e is approximately 2.718281828

Basic Exponential Function Graphs

(a) $f(x)=a^{x}, x \in \mathrm{R}, \mathrm{a}>1$ Basic properties:
i) $f(x)>0 \quad$ for $x \in \mathrm{R}$.
ii) When $x=0, f(x)=1$

iii) When $x \rightarrow \infty, f(x) \rightarrow \infty$
iv) When $x \rightarrow-\infty, f(x) \rightarrow 0$
(b) $f(x)-a^{x}, \quad \mathrm{x} \in \mathrm{R}, 0<\mathrm{a}<1$

Basic properties:
i) $f(x)>0$ for $x \in R$.
ii) When $x=0, f(x)=1$
iii) When $\mathrm{x} \rightarrow \infty, \mathrm{f}(\mathrm{x}) \rightarrow 0$
iv) When $\mathrm{x} \rightarrow-\infty, \mathrm{f}(\mathrm{x}) \rightarrow \infty$

Example 1:
Sketch the graph of:
a) $f(x)=e^{x}$
b) $f(x)=e^{-x}$

c) $f(x)=-e^{x}$

d) $f(x)=-e^{-x}$

e) $f(x)=e^{x}+1$

$$
\begin{aligned}
& D_{f}=R \\
& R_{f}=(1, \infty)
\end{aligned}
$$

(g) $f(x)=e^{x+2}$

(i) $f(x)=1+e^{x-1}$

(f) $f(x)=e^{x}-1$

$$
\begin{aligned}
& D_{f}=R \\
& R_{f}-(-1, \infty)
\end{aligned}
$$

(h) $f(x)=e^{x-1}$

$$
\begin{aligned}
& D_{f}=R \\
& R_{f}=(0, \infty)
\end{aligned}
$$

(j) $f(x)=1-e^{2 x-1}$

$(\mathrm{k}) f(x)=1-e^{-2 x-1}$

Logarithmic Function

A logarithmic function is a function of the form $f(x)=\log _{a} x$, where $a>0$ and $a \neq 1$. The constant a is known as the base and the variable x is any positive real number.

Basic Logarithmic Function Graphs

$f(x)$	
(a) $f(x)=\log _{\mathrm{b}} x \quad, x \in \mathrm{R}, \mathrm{b}>1$	$\mathrm{f}(\mathrm{x})=\log _{\mathrm{b}} \mathrm{x}, \mathrm{b}>1$
Basic properties :	
i) When $x=1, f(x)=0$	$1 \longrightarrow x$
ii) When $x \rightarrow 0, f(x) \rightarrow-\infty$	
iii) When $x \rightarrow \infty, f(x) \rightarrow \infty$	

(b) $f(x)=\log _{b} x \quad, x \in \mathrm{R}, 0<\mathrm{b}<1$

Basic properties :
i) When $x=1, f(x)=0$
ii) When $x \rightarrow 0, f(x) \rightarrow \infty$
iii) When $x \rightarrow \infty, f(x) \rightarrow-\infty$

Example 2:
Sketch the graph of:
(a) $f(x)=\ln x$

$$
D_{f}=(0, \infty), R_{f}=R
$$

(b) $f(x)=-\ln x$

$$
D_{f}=(0, \infty), R_{f}=R
$$

(c) $f(x)=\ln (-x)$

$$
D_{f}=(-\infty, 0), R_{f}=R
$$

(e) $f(x)=\ln (x-1)$

$$
D_{f}=(1, \infty), R_{f}=R
$$

$(\mathrm{g}) f(x)=-\ln (1-x)$

$D_{f}=(-\infty, 1), R_{f}=R$
(d) $f(x)=-\ln (-x)$

$$
D_{f}=(-\infty, 0), R_{f}=k
$$

(f) $f(x)=-\ln (x+2)$

$D_{f}=(-2, \infty) R_{f}=R$
(h) $f(x)=2+\ln (x+1)$

$$
D_{f}=(1, \infty), R_{f}=R
$$

(i) $f(x)=3-2 \ln (x-1)$
(j) $f(x)=1-\ln (2-x)$

$$
\begin{aligned}
& D_{f}=(1, \infty) \\
& k_{f}=k
\end{aligned}
$$

$$
D_{f}=(-\infty, 2)
$$

(k) $f(x)=2+\ln (3-x)$

Relationship Between An Exponential and Logarithmic Function

Exponential function

The inverse of exponential function, $f(x)=a^{x}$ is
Let $f\left[f^{-1}(x)\right]=x$

$$
f^{a^{f^{-1}(x)}(x)=x}=\log _{x} x
$$

The inverse of exponential function is a logarithmic function.

Logarithmic function

The inverse of logarithmic function, $f(x)=\log _{a} x$ is
Let $f\left[f^{-1}(x)\right]=x$

$$
\log _{a} f^{-1}(x)=x
$$

$$
f^{-1}(x)=a^{x}
$$

The inverse of logarithmic function is exponential function.

LECTURE 7 OF 7

TOPIC : 5.0 FUNCTIONS AND GRAPHS

SUBTOPIC : 5.4 Exponential and Logarithmic Functions

LEARNING
OUTCOMES : At the end of the lesson, students are able to:
(c) determine the composite functions involving exponential and logarithmic functions.
(d) Sketch the graph involving exponential and logarithmic functions.

Example 1:

Given that $f(x)=2 x+1$ and $g(x)=e^{x}$, find the $g f(x)$ and $f g(x)$.

Solution:

Example 2:

Functions f and g are defined as $f(x)=\ln (x-2)$ and $g(x)=2 x+3$.
(a) Find $f g^{-1}(x)$ and $g^{-1} f(x)$
(b) Sketch the graph of $f g^{-1}(x)$ and $g^{-1} f(x)$

Solution:

Example 3:

Given $f(x)=\ln x$, find $f^{-1}(x)$ and sketch the graph of $f(x)$ and the $f^{-1}(x)$ on the same axes.

Solution:

Example 4:

Given $f(x)=\ln (3 x+2)$, show that f is one-to-one function and
(a) find the $f^{-1}(x)$,
(b) sketch the graph of $f(x)$ and the $f^{-1}(x)$ on the same axes.

Solution:

Example 5:
Function f is given by $\mathrm{f}(\mathrm{x})=5+2 \mathrm{e}^{-2 \mathrm{x}}$.
(a) Use algebraic method to show that f is a one-to-one function.
(b) Determine $f^{-1}(x)$. State the domain and range of $f^{-1}(x)$.
(c) Show the relationship between the graphs of f and $f^{-1}(x)$ on the same diagram.

Solution :

