LECTURE 1 OF 7

TOPIC:5.0 FUNCTIONS AND GRAPHS

SUBTOPIC : 5.1 Functions

LEARNING OUTCOMES : At the end of the

lesson, students are able to:

- (a) define a function.
- (b) use the vertical line test to determine whether a graph represent a function.
- (c) use the algebraic approach or horizontal line test to determine whether a function is one-toone.

CONTENT

Definition

Relation

A relation is a correspondence between a first set, called the domain, and the second set, called the range, such that each member of the domain corresponds to at least one member of the range.

Example 1:

Let $A = \{3,4,5\}$ and $B = \{6,10,12\}$. Consider the relation "is a factor of". This relation can be displayed using the arrow diagram as follows:

The relation can also written in the form of ordered pairs as $\{(3,6),(3,12),(4,12),(5,10)\}$.

Types of relation

- One to one
- One to many
- Many to one
- Many to many

Function

A function is defined as a relation where every element in the domain has a unique image in the range.

 \checkmark In other words, a function are:

i) one to one relation. ii) Many to one relation.

Examples of functions:

One-to-one relation and onto

One-to-one relation and not onto

Many to one relation and not onto

Many to one relation and not

- ✓ Mapping is another name for function.
- ✓ A mapping or function f from set A to set B is usually written as $f: A \to B$.
- ✓ If an element *x*, of set A is mapped into an element y in set B, so *y* is an image of *x*.
- ✓ The image of x is thus represented by f(x) and we write y = f(x)

Example 2:

Let A = {1, 2, 3, 4} and B = {set of integers}. Illustrate the function $f: x \rightarrow x+3$

The graph of a function

- most common method of representing function is by a graph
- each graph is drawn with the coordinate axes
- horizontal axis (x axis) representing the domain
- vertical axis (y axis) representing the range.

Vertical line Test

The vertical line test is a graphical method use to determine whether a relation in x is a function. If any vertical line drawn intersects the curve y = f(x) only at one point, then f(x) is a function of x.

Example 3:

Consider the graphs shown below and state whether they represent functions.

One –to one functions

In the above arrow diagram, every element of set X is mapped to exactly one element of set Y. Function f which has this property is known as a **one-to-one function**.

In the above arrow diagram, two elements, namely 0 and 1, of set X are mapped to the same element of 4 of set Y, that is g(0)=g(1)=4. As such, function g is **not a one-to-one function**.

There are two methods to determine whether a function is one-to-one:

(a) <u>Horizontal Line test (Graphically Method)</u> The horizontal line test is a graphical method used to determine is a function is one to one. In general, if any horizontal line drawn intersects the graph of the function only at one point, then the function is one-to-one function.

(b) <u>Algebraic Method</u>

A function *f* with a domain *X* is called a one-to-one function if two elements of X have the same image, that is $f(x_1) \neq f(x_2)$ for $x_1 \neq x_2$. To prove that a function is one-to-one, we must show that

 $f(x_1) = f(x_2)$ implies that $x_1 = x_2$

Example 4:

Use the horizontal line test (graphical method) to determine whether each of the following functions is one-to-one function.

(a) f(x) = x(x-2)(b) $f(x) = x^3 - 1$ (c) $f(x) = \sqrt{x+1}$ (d) $f(x) = \frac{-2}{x+1}$ (e) f(x) = |x-1|

Solution: f(x)(a) \hat{x} 0 2 f(x)(b) x 1 -1 (c) f(x)1 x-1 f(x)(d) \mathbf{x} -1 (e) f(x)

1

1

-1

x 163

Example 5:

By using the algebraic method, determine whether f is a one to one function or not

(a) f(x) = 2x + 3(b) $f(x) = x^2 + 2x - 5$ (c) $f(x) = \frac{2}{x+3}$ (d) $f(x) = \sqrt{x+4}$ (e) f(x) = |x-3|

LECTURE 2 OF 7

TOPIC : 5.0 FUNCTIONS AND GRAPHS

SUBTOPIC : 5.1 Functions

LEARNING OUTCOMES : At the end of the lesson, students are able to:

(d) sketch the graph of a function

(e) state the domain and range of a function

CONTENT Basic shape of a function

(i) Quadratic function

(iii) surd function

The graph exist only for $x \ge 0$

(iv) Reciprocal function

(v) Absolute value function, |f(x)|f(x) = |x|

Example 1:

Sketch the graph of the following functions.

(a) f(x) = -5(b) f(x) = -x + 2(c) $f(x) = x^2 - x - 2$ (d) $f(x) = x^2(2 - x)$ (e) $f(x) = \sqrt{x + 5}$ (f) f(x) = |x - 2|(g) $f(x) = \frac{1}{x - 2}$ (h) $f(x) = \begin{cases} -x^2, & x < 0 \\ x + 5, & x \ge 0 \end{cases}$

Domain and Range

Given y = f(x)

- Domain, D_f , is the set of the values of x in which f(x) is defined.
- Range, R_f, is the set of all possible value of f(x) as x varies throughout the domain. R_f is a collection of all image of f.
- Domain and range of function can be written in the form of sets or interval notations.
- There are two methods to find the domain and range of a function f(x)
 - (i) Graphically
 - (ii) Algebraic

The domain and the range of the function can be determined by means of graph, the horizontal axis representing the domain and the vertical axis, the range.

Example 2:

Sketch the graph of the following functions. Hence, find its domain and range.

(a) f(x) = 2 - 2x (b) $f(x) = x^2 - 4x - 5$ (c) $f(x) = -x^3 + 8$ (d) $f(x) = \sqrt{x - 3}$ (e) $f(x) = -\frac{1}{2x - 5}$ (f) f(x) = |3x - 1|(g) $f(x) = \begin{cases} -x + 2, & -1 \le x \le 1 \\ 3, & x = 1 \\ x, & x > 1 \end{cases}$

LECTURE 3 OF 7

TOPIC : 5.0 FUNCTIONS AND GRAPHS

SUBTOPIC : 5.2 Composite Functions

LEARNING OUTCOMES : At the end of the

lesson, students are able to:

- (a) represent composite function by an arrow diagram
- (b) find composite functions.
- (c) find one of the functions when the composite and the other function are given.

CONTENT

Definition:

Consider two functions f(x) and g(x).

We define $f \circ g(x) = f[g(x)]$ meaning that the output values of the function g are used as the input values for the function f.

This can be represented in an arrow diagram:

Note that $(f \circ g)(x) \neq f(x) g(x)$.

Similarly, we define $g \circ f(x) = g[f(x)]$ meaning that the output values of the function f are used as the input values for the function g.

This can be represented in an arrow diagram.

Example 1:

If f(x) = 3x+1 and g(x) = 2-x, find as a function of x (a) $f \circ g$ (b) $g \circ f$ Solution:

Note that $(f \circ g)(x) \neq (g \circ f)(x)$.

Example 2:

The function f and g are defined by $f: x \to 3x^2 + 1$ and $g: x \to 5x - 7$, find: (a) fg(x) (b) ff(x) (c) gg(x)

Solution:

Example 3:

If f(x) = 2x - 1 and $g(x) = x^3$, find the values of : (a) gf(3) (b) fg(3) (c) $f^2(3)$

Note that
$$f^{2}(3) \neq [f(3)]^{2}$$

Example 4: Given that f(x) = 2x, g(x) = 1 + x and $h(x) = x^2$, find the functions: (a) fgh(x) (b) hgf(x) (c) ghf(x)

Solution:

Example 5:

The functions *f*, *g* and *h* are defined by f(x) = 2-x, $g(x) = \frac{3}{x+1}$ and h(x) = 2x-1(a) Show that $f^2(x) = x$. (b) Find an expression for $g^2(x)$, (c) Solve the equation $h^3(x) = x$.

Example 6:

Given that $g(x) = x^2 + 1$ and $gf(x) = x^2 + 4x + 5$, find the function of f(x).

Solution:

Example 7:

If g(x) = 3 + x and $fg(x) = x^2 + 6x + 10$, find the function of f(x).

Example 8:

The function f and g are defined by f(x) = x + 4, $g(x) = x^2$ respectively. Find the function of h such that $hgf(x) = x^2 + 8x + 3$

Example 9:

If $fg(x) = 4x^2 - 2x + 1$ and g(x) = 2x + 1, find the function of gf(x). Subsequently, find the values of x that satisfy fg(x) = gf(x).

LECTURE 4 OF 7

TOPIC : 5.0 FUNCTIONS AND GRAPHS

SUBTOPIC : 5.3 Inverse Functions

LEARNING OUTCOMES : At the end of the

lesson, students are able to:

- (a) determine the inverse of a function.
- (b) determine whether a function has an inverse and find the inverse of a function.

CONTENT

The Inverse Of A Function

Fig. 1 shows the mapping of the domain $\{-3, 0, 1, 2\}$ by the function f(x) = 3x-2.

Verify that the range is $\{-11, -2, 1, 4\}$.

<u>QS015</u>

Is there a function that will map back to the domain? The function f(x) in Fig. 1 mapped x onto y where y = 3x - 2. Now we wish to start with y and return to x. If 3x - 2 = y. So, $x = \frac{y + 2}{3}$. So this new function will map y onto $\frac{y+2}{3}$ Testing this with y = -11, we get $\frac{-11+2}{3} = -3$ which is the original value of x.

We can check with other values. Such a function, *if it exists*, is called the inverse function of f and is written as f^{-1} . (Read this as 'inverse f'). Usually we take x as the 'starting' letter so we have $f^{-1}(x) = \frac{x+2}{3}$.

For the function f(x) = 3x - 2, its inverse $f^{-1}(x) = \frac{x+2}{3}$.

The inverse of a function f exists if and only if f oneto one function.

If $f: x \to y$ is a function, then $y \to x$ is also a function. Thus, the inverse function of *f* can be written as $f^{-1}: y \to x$. To verify that f^{-1} is the inverse of *f*, show that

$$f[f^{-1}(x)] = x$$
 or $f^{-1}[f(x)] = x$

Example 1:

Show whether the following functions are one-to-one. For functions that are one-to-one, find their inverse functions.

(a)
$$f(x) = 3x + 2$$

(b) $g(x) = x^2 + 4x + 1$
(c) $p(x) = -x^2 + 5$, $x \ge 0$
(d) $q(x) = \frac{2}{x}$
(e) $k(x) = |x+3|$

LECTURE 5 OF 7

TOPIC:5.0 FUNCTIONS AND GRAPHS

SUBTOPIC : 5.3 Inverse Functions

LEARNING OUTCOMES : At the end of the lesson, students are able to:(c) Identify the domain and range of an inverse function.

CONTENT

Domain and Range of Inverse function

From the diagram : Domain of f(x) = Range of $f^{-1}(x)$ Range of f(x) = Domain of $f^{-1}(x)$

Graph of Inverse Function

With the property of the inverse function $D_f = R_{f^{-1}}$ and $R_f = D_{f^{-1}}$, that means point (x, y) of f(x) is changed to (y, x) of $f^{-1}(x)$ and achieved by reflecting the points about y = x.

Graph of $y = f^{-1}(x)$ is obtained by reflecting the graph of y = f(x) about the line y = x.

Example 1:

Find the inverse of $f(x) = \frac{1}{1-x} + 2, x \neq 1$ and state the domain of the inverse function.

Example 2:

Function f and g are defined as $f(x) = \frac{2x-5}{x+3}$ and $g(x) = \frac{3x+5}{2-x}$.

(a) Find fg(x) and deduce $f^{-1}(x)$

(b) Determine the domain and range of $f^{-1}(x)$

Solution:

Example 3:

The functions f and g are defined by f(x) = 2x + 3 and g(x) = x - 1. Find (a) f^{-1} and g^{-1} (b) $gf^{-1}(x)$ and $fg^{-1}(x)$ (c) $(fg)^{-1}(x)$ (d) $f^{-1}g^{-1}(x)$

Example 4:

Given that $f(x) = (x - 1)^2 + 2$ for $x \ge 1$. Find the $f^{-1}(x)$ and state its domain and range.

Hence, sketch the graph of f(x) and $f^{-1}(x)$ on the same axis.

LECTURE 6 OF 7

TOPIC:5.0 FUNCTIONS AND GRAPHSSUBTOPIC :5.4 Exponential and
Logarithmic Functions

LEARNING OUTCOMES : At the end of the lesson, students are able to:

(a) determine the relationship of exponential and logarithmic functions graphically and algebraically.(b) find the domain and range of an exponential and logarithmic functions.

CONTENT

Exponential function is $f(x) = a^x$ where $x \in \mathbb{R}$, a > 0 and $a \neq 1$. Constant *a* is known as the base and variable *x* is known as the exponent.

Important class of exponential function is one where the base is given by Euler's number, e. Euler's number, e is

an irrational number where $= \lim_{m \to \infty} \left(1 + \frac{1}{m}\right)^m$. Value of *e* is approximately 2.718281828

Basic Exponential Function Graphs

iii) When
$$x \to \infty$$
, $f(x) \to \infty$
iv) When $x \to -\infty$, $f(x) \to 0$
(b) $f(x) - a^x$, $x \in \mathbb{R}$, $0 < a < 1$
Basic properties:
i) $f(x) > 0$ for $x \in \mathbb{R}$.
ii) When $x = 0$, $f(x) = 1$
iii) When $x \to \infty$, $f(x) \to 0$
iv) When $x \to -\infty$, $f(x) \to \infty$
Example 1:
Sketch the graph of:
a) $f(x) = e^x$
b) $f(x) = e^{-x}$
 $f(x) = e^{-x}$
 $f(x) = e^{x}$
 $f(x) = e^{x}$
 $f(x) = e^{x}$
 $f(x) = e^{x}$
 $f(x) = e^{-x}$
 $f(x) = e^{-x}$

e) $f(x) = e^x + 1$

(f)
$$f(x) = e^x - 1$$

(h) $f(x) = e^{x-1}$

$$D_f = R$$
$$R_f = (0, \infty)$$

 $(\mathbf{j}) f(x) = 1 - e^{2x-1}$

Logarithmic Function

A logarithmic function is a function of the form $f(x) = \log_a x$, where a > 0 and $a \neq 1$. The constant *a* is known as the base and the variable *x* is any positive real number.

Basic Logarithmic Function Graphs

(b)
$$f(x) = \log_b x$$
, $x \in \mathbb{R}$, $0 < b < 1$
Basic properties :
i) When $x = 1$, $f(x) = 0$
ii) When $x \to 0$, $f(x) \to \infty$
iii) When $x \to \infty$, $f(x) \to -\infty$

Example 2: Sketch the graph of: (a) $f(x) = \ln x$

 $D_f = (0, \infty) R_f = R$

 $D_f = (0, \infty), R_f = R$

$$D_f = (-\infty, 0) R_f = R$$

$$D_f = (1, \infty), R_f = R$$

(g)
$$f(x) = -\ln(1-x)$$

 $D_f = (-\infty, 1), R_f = R$

$$(d)f(x) = -\ln(-x)$$

$$D_f = (-\infty, 0), R_f = R$$

 $D_f = (-2,\infty) R_f = R$

 $D_f = \begin{pmatrix} 1, \infty \end{pmatrix}, R_f = R$

Relationship Between An Exponential and Logarithmic Function

Exponential function

The inverse of exponential function, $f(x) = a^x$ is Let $f[f^{-1}(x)] = x$ $a^{f^{-1}(x)} = x$ $f^{-1}(x) = \log_x x$ The inverse of exponential function is a logarithmic function.

Logarithmic function

The inverse of logarithmic function, $f(x) = \log_a x$ is Let $f[f^{-1}(x)] = x$ $\log_a f^{-1}(x) = x$ $f^{-1}(x) = a^x$

The inverse of logarithmic function is exponential function.

LECTURE 7 OF 7

TOPIC:5.0 FUNCTIONS AND GRAPHS

SUBTOPIC : 5.4 Exponential and Logarithmic Functions

LEARNING

OUTCOMES : At the end of the lesson, students are able to:

(c) determine the composite functions involving exponential and logarithmic functions.

(d) Sketch the graph involving exponential and logarithmic functions.

Example 1:

Given that f(x) = 2x + 1 and $g(x) = e^x$, find the gf(x) and fg(x)..

Example 2:

Functions f and g are defined as $f(x) = \ln (x-2)$ and g(x) = 2x + 3.

- (a) Find $fg^{-1}(x)$ and $g^{-1}f(x)$
- (b) Sketch the graph of $fg^{-1}(x)$ and $g^{-1}f(x)$

Solution:

Example 3:

Given f(x) = lnx, find $f^{-1}(x)$ and sketch the graph of f(x) and the $f^{-1}(x)$ on the same axes.

Example 4:

Given $f(x) = \ln (3x+2)$, show that *f* is one-to-one function and

(a) find the $f^{-1}(x)$,

(b) sketch the graph of f(x) and the $f^{-1}(x)$ on the same axes.

Solution:

Example 5:

Function f is given by $f(x) = 5 + 2e^{-2x}$.

- (a) Use algebraic method to show that f is a one-to-one function.
- (b) Determine $f^{-1}(x)$. State the domain and range of $f^{-1}(x)$.
- (c) Show the relationship between the graphs of f and $f^{-1}(x)$ on the same diagram.